NAVAL POSTGRADUATE SCHOOL Monterey, California AD-A276 583 **THESIS** S DTIC ELECTE D MAR 10 1994 ANALYSIS, APPROACH AND ASSESSMENT OF VIBRATION CRITERIA IN SHIPBOARD MACHINERY CONDITION MONITORING AND DIAGNOSTICS by Chao-Shih Liu December 1993 Thesis Advisor: Young S. Shin Approved for public release; distribution is unlimited. 94 3 9 011 ## REPORT DOCUMENTATION PAGE Form Approved DMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching exciting data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection information funding suggestions for reducing this burden to Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jefferson Devis Highway Suite 1204 Articles 2204 Articles the Office of Lengagement and Burdest Paperwork Reduction Project(0704-0188) Washington, DC 20503 | collection information, including suggestions to
Devis Highway, Suite 1204, Artington, VA 222 | or reducing this burden to Washington Heads
02-4302, and to the Office of Management a | quarters Services, Directorate for ind Budget, Paperwork Reduction | nformation O
Project(0704 | perations and Reports, 1215 Jefferson
0188), Washington, DC 20503 | |--|---|--|------------------------------|--| | 1. AGENCY USE ONLY (Leave blank | · 1 | 3. REPORT TYPE A | | COVERED | | | December 1993 | Master's The | | | | 4. TITLE AND SUBTITLE | | | 5. FUND | ING NUMBERS | | ANALYSIS, APPROACH ANI | | | | | | SHIPBOARD MACHINERY C | ONDITION MONITORING A | ND DIAGNOSTICS | | | | 6. AUTHOR(S) | | | | | | Chao-Shih Liu | | | | | | | | | | | | 7. PERFORMING ORGANIZATION I | NAME(S) AND ADDRESS(ES) | | | ORMING ORGANIZATION RT NUMBER | | Naval Postgraduate Scho | ool | | rig.r O | TT NOMBER | | | | | | | | Monterey, CA 93943-50 | 00 | | | | | | | | 40.000 | | | 9. SPONSORING/MONITORING AG | ENCY NAME(S) AND ADDRESS(E | 28) | | NSORING/MONITORING
NCY REPORT NUMBER | 11. SUPPLEMENTARY NOTE | | | <u> </u> | | | | his thesis are those of the au | uthor and do not rafle | ect the o | fficial natice or position | | • | fense or the United States | | ct uie o | incial poncy of position | | of the Department of De | icise of the Cinet States | Go verminent. | | | | 12a. DISTRIBUTION/AVAILABILITY | STATEMENT | | 12b. DIS | TRIBUTION CODE | | Approved for public re | lease: | | | | | e production of the contract o | , | | | | | Distribution is unlimite | ed. | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | 13. ABSTRACT (Maximum 200 word | els plays a vital role in a ma | ahinası aanditian m | onitoria | a and diagnostic system | | • | oaches to setting vibration | - | | | | | | | | | | | he time and frequency do | | | | | | act the dominate peak point | | | | | _ | bution and can be normalized | | | | | | he VdB domain is suggeste | | | • | | , | sis (OBA) is introduced. The | | | | | | method with the broadbane | | | | | | to the changes in VdB level | | | | | _ | lyses are written using MA | ATLAB. Examples | of the u | se or these programs are | | included in this report. | | | | | | 14. SUBJECT TERMS | | | | 15. NUMBER OF PAGES
131 | | | alysis, Alarm Level, Co | | g and | 16. PRICE CODE | | | Analysis, Fire Pump, Vibr | | | | | 17. SECURITY CLASSIFICATION 1 OF REPORT | 18. SECURITY CLASSIFICATION
OF THIS PAGE | 19. SECURITY CLASSIFICATION OF ABSTRACT | CATION | 20. LIMITATION OF ABSTRACT | | UNCLASSIFIED | UNCLASSIFIED | UNCLASSIFIE | ED | UL | NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 # Approved for public release; distribution is unlimited # ANALYSIS, APPROACH AND ASSESSMENT OF VIBRATION CRITERIA IN SHIPBOARD MACHINERY CONDITION MONITORING AND DIAGNOSTICS by Chao-Shih Liu Capt., Republic of China Army B.S., Chung Cheng Institute of Technology, 1987 Submitted in partial fulfillment of the requirements for the degree of ### MASTER OF SCIENCE IN MECHANICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL December 1993 Author: Chao-Shih Liu Approved By: "Jauren Killy Department of Mechanical Engineering #### **ABSTRACT** The setting of alarm levels plays a vital role in a machinery condition monitoring and diagnostic system. In this research, two approaches to setting vibration alarm levels using vibration signals produced by fire pumps are presented in the time and frequency domains. In the time domain, the cross peak analysis (CPA) is proposed to extract the dominate peak points. The distribution of these cross peak points is found to have a lognormal distribution and can be normalized to a Normal distribution in the VdB domain. The computed μ +2 σ value in the VdB domain is suggested for use as the alarm level. In the frequency domain, the 1/1 octave band analysis (OBA) is introduced. Three artificial fault simulations are conducted to compare the 1/1 octave band method with the broadband method. The results show that the 1/1 octave band method is more sensitive to the changes in VdB level than the broadband method. The computer programs to perform these two analyses are written using MATLAB. Examples of the use of these programs are included in this report. | Accesio | n For | | |------------------------------------|------------------|-------| | NTIS
DTIC
Unanno
Justific | TAB
ounced | | | By
Distrib | ution / | | | A | vailability | Codes | | Dist | Avail au
Spec | | | A-1 | | | # TABLE OF CONTENTS | I. | INI | RODUCTION | 1 | |-----|-----|---|----| | N. | BA | CKGROUND | 3 | | | A. | DATA SOURCE | 3 | | | B. | ALARM LEVEL | 8 | | | | 1. Time Domain Criteria | 8 | | | | a. Vibration Severity Criterion Method | 8 | | | | b. Amplitude Probability Criterion Method | 10 | | | | 2. Frequency Domain Criteria | 10 | | | | a. Broadband Criterion Method | 10 | | | | b. Octave Band Criterion Method | 10 | | | | c. Narrowband Criterion Method | 11 | | Ш. | ME | THODS OF ANALYSIS | 12 | | | A. | DATA ACQUISITION AND PROCESSING SYSTEM | 12 | | | В. | TIME DOMAIN - CROSS PEAK ANALYSIS | 14 | | | C. | FREQUENCY DOMAIN - 1/1 OCTAVE BAND ANALYSIS | 19 | | IV. | RE | SULTS OF USING TIME WAVEFORM TAPES | 23 | | | Å. | CROSS PEAK ANALYSIS | 23 | | | | 1. Probability Distribution of Cross Peaks | 23 | | | | 2. Statistical Analysis Results. | 34 | | | B. | 1/1 OCTAVE BAND ANALYSIS | 38 | | | | 1. 1/1 Octave Band Analysis Results | 38 | | | | 2. Artificial Fault Simulations | 46 | | | | a. | Fault Simulation | 46 | |------|------|----------|---|-----| | | | b. | Simulation of A Misalignment Fault | 47 | | | | C. | Simulation of A Looseness Fault At Impeller | 49 | | | | d. | Simulation of A Bearing Fault | 51 | | V. | RE: | SULTS C | F USING NAVSSES FREQUENCY DOMAIN DATABAS | E53 | | VI. | CO | NCLUSI | ONS AND RECOMMENDATIONS | 62 | | APP | END | IX A. M. | ATLAB PROGRAM CODE | 65 | | | A. | ON-LII | NE HELP DOCUMENTATION | 65 | | | В. | PROGI | RAM CODE | 76 | | APP | END | IX B. EX | AMPLES OF USING MATLAB PROGRAM IN PC486 | 92 | | | A. | CROSS | PEAK ANALYSIS EXAMPLE | 92 | | | B. | 1/1 OC | TAVE BAND ANALYSIS EXAMPLE | 93 | | APP | END | IX C. FI | GURES OF STATISTICAL ANALYSIS RESULTS | 94 | | LIST | r of | REFERE | NCES | 116 | | INI | TAL | DISTRI | BUTION LIST | 119 | # LIST OF TABLES | TABLE 1: | CLASSIFICATION OF FIRE PUMP DATA | 3 | |-----------|--|----| |
TABLE 2: | ABBREVIATIONS OF PICKUP LOCATION | 4 | | TABLE 3: | VIBRATION SOURCE COMPONENTS OF TYPE I FIRE PUMP | 5 | | TABLE 4: | VIBRATION SOURCE COMPONENTS OF TYPE II FIRE PUMP | 6 | | TABLE 5: | VIBRATION SOURCE COMPONENTS OF TYPE III FIRE PUMP | 7 | | TABLE 6: | SPECIFICATIONS OF FM RECORDER | 8 | | TABLE 7: | ANSI PREFERRED CENTER FREQUENCIES AND PASS BANDS FOR 1/3 OCTAVE BAND | 20 | | TABLE 8: | ANSI PREFERRED CENTER FREQUENCIES AND PASS BANDS FOR 1/1 OCTAVE BAND | 21 | | TABLE 9: | DATA COLLECTION SHEET FOR TYPE I (10/30/89) FIRE PUMPS | 27 | | TABLE 10: | DATA COLLECTION SHEET FOR TYPE I (2/26/90) FIRE PUMPS | 28 | | TABLE 11: | DATA COLLECTION SHEET FOR TYPE II FIRE PUMPS | 29 | | TABLE 12: | DATA COLLECTION SHEET FOR TYPE III (11/24/89) FIRE PUMPS | 30 | | TABLE 13: | DATA COLLECTION SHEET FOR TYPE III (3/10/89) FIRE PUMPS | 31 | | TABLE 14: | STATISTICAL ANALYSIS RESULTS FOR CROSS PEAK POINTS | 36 | | TABLE 15: | COMPARISON OF COMPUTED µ+2σ LEVEL AND BROADBAND ALARM LEVEL | 37 | | TABLE 16: | SUMMARIZED MEAN (μ) AND STANDARD DEVIATION (σ) OF 1/1 OCTAVE BAND LEVELS | 45 | | TABLE 17: | BEARING FREQUENCIES OF MRC310 BEARING | 51 | | TABLE 18: | DATA COLLECTION SHEET FOR AVAILIABLE FREQUENCY DOMAIN DATA FROM NAVSSES DATABASE | 54 | # **LIST OF FIGURES** | Figure | 1: | Schematic Layout of a Type I Fire Pump | 5 | |--------|------------|---|----| | Figure | 2: | Schematic Layout of a Type II Fire Pump | 6 | | Figure | 3: | Schematic Layout of a Type III Fire Pump | 7 | | Figure | 4 : | General Machinery Vibration Severity Chart | 9 | | Figure | 5 : | Block Diagram of Data Acquisition and Processing System | 13 | | Figure | 6: | Comparison of Overall Peak and Cross Peak Points (a) Overall Peak Points (b) Cross Peak Points | 17 | | Figure | 7 : | Cross Peak Analysis Flow Chart | 18 | | Figure | 8: | Flow Chart of 1/1 Octave Band Analysis Technique | 22 | | Figure | 9: | Typical Time Series and Frequency Spectrum of Type I Fire Pumps (10/30/89) Measured at MB(FE) | 24 | | Figure | 10: | Typical Time Series and Frequency Spectrum of Type II Fire Pumps Measured at MB(FE) | 25 | | Figure | 11: | Typical Time Series and Frequency Spectrum of Type III Fire Pumps (3/10/89) Measured at UMB | 26 | | Figure | 12: | The probability Distribution of Cross Peak Data for Type I (10/30/89) Fire Pumps Measured at MB(FE) | 32 | | Figure | 13: | The probability Distribution of Cross Peak Data for Type I (2/26/90) Fire Pumps Measured at MB(FE) | 33 | | Figure | 14: | The Summarized 1/1 Octave Band Levels for Type I Fire Pumps | 39 | | Figure | 15: | The Summarized 1/1 Octave Band Levels for Type II Fire Pumps | 41 | | Figure | 16: | The Summarized 1/1 Octave Band Levels for Type III Fire Pumps | 43 | | Figure | 17: | Fault with 6VdB Gain at Center Bar | 46 | | Figure | 18: | Simulation Result for Artificial Misalignment at Shaft | 48 | | Figure | 19: | Simulation Result for Artificial Looseness at Impeller | 50 | | Figure | 20: | Simulation Result for Artificial Bearing Fault at Motor | 52 | | Figure | 21: | The Averaged Spectra for Type I Fire Pumps (0-10 Order) Using Frequency Domain Data | 55 | |--------|-----|--|----| | Figure | 22: | The Averaged Spectra for Type I Fire Pumps (0-100 Order) Using Frequency Domain Data | 57 | | Figure | 23: | The Summarized 1/1 Octave Band Levels for Type I Fire Pumps Using NAVSSES Frequency Domain Data | 59 | | Figure | 24: | The Narrow Band Spectra for Type I Fire Pump Using NAVSSES Frequency Domain Data Measured at MB(FE) and MB(CE) | 61 | #### **ACKNOWLEDGEMENT** I would like to express my sincere appreciation to my advisor, Professor Young S. Shin, for his inspiration and guidance throughout the course of my thesis research at the Naval Postgraduate School. I would also like to thank Dr. J.J. Jeon for his invaluable help in the technical aspects of completing this thesis. Additionally, I would like to thank the Mr. Jon Loeliger, Mr. Orlando Taraborrelli and Mr. Authur Cautilli of CDNSWC (formly NAVSSES) for their support and funding of this research. I dedicate this work to my parents and my fiancee Hui-Lan Liu, for their moral support and understanding over the duration of this research. #### I. INTRODUCTION In recent years, the rising cost of machine maintenance has driven engineers to develop more economical and efficient methods to determine machine health and to plan accordingly the required preventive and corrective maintenance. The most popular technique in use today is a predictive maintenance program based on condition monitoring. In naval applications, condition monitoring is commonly achieved utilizing vibration measurement and analysis on-board surface ships and submarines [Refs. 1-7]. This research focuses on the use of vibration measurement to monitor machine health and to diagnose system problems which could lead to machine failure. In addition to providing accurate and understandable data on the machine's current condition, a monitoring and diagnostic system must also limit the number of false alarms. Alarm threshold settings are vitally important in machine vibration diagnostics. Alarm thresholds set too high may result in premature machine failure caused by an undetected failure condition. Alarm thresholds set too low may result in frequent false alarms causing unnecessary system interruptions and repairs. False alarms also reduce operator confidence in the monitoring and diagnostic system. Because the optimum setting of alarm thresholds in vibration monitoring and diagnostic systems continues to be problematical, the goals of this research were: - To establish a statistical analysis method for setting vibration alarm levels by using time domain data. - To investigate the difference in broadband alarm levels between the cross peak method and vibrometer readings. - To perform a 1/1 octave band analysis for setting vibration alarm levels by using time and frequency domain data. Chapter II provides the background information on the machinery utilized in this research and a discussion of alarm level setting. Chapter III describes the procedure of data acquisition and processing and the methods of analysis. In the time domain, a statistical analysis method using "cross peak" data is introduced. In the frequency domain, a 1/1 octave band concept is used to set alarm levels. The test results and observations using time domain data are presented in Chapter IV. Three types of shipboard fire pumps were analyzed using time and frequency data. Three artificial fault simulations were performed to assess the 1/1 octave band method. Chapter V demonstrates the 1/1 octave band analysis results using the NAVSSES frequency domain database. Chapter VI contains conclusions and recommendations for further research. #### II. BACKGROUND #### A. DATA SOURCE The fire pump on a naval ship provides more than fire fighting water to damage control systems. The seawater provided by fire pumps is also used by vital air conditioning and chill water systems, main drainage systems and decontamination sprinkler systems. At least one fire pump is running whenever a ship is underway or at anchor. In this research, 23 fire pumps from four classes of ships are grouped into three types in Table 1. TABLE 1: CLASSIFICATION OF FIRE PUMP DATA | Туре | Date of
Survey | Number of Fire Pumps | Number of Pickup Locations | Number of Data Sets | |------|-------------------|----------------------|----------------------------|---------------------| | 7 | 10/30/89 | 6 | 5 | 30 | | 1 | 2/26/90 | 6 | 5 | 30 | | П | N/A | 3 | 5 | 15 | | 777 | 11/24/89 | 4 | 5 | 20 | | Ш | 3/10/89 | 4 | 5 | 20 | The vibration velocity signals were measured by means of transducers strategically placed at pickup locations on the pumps. Schematic layouts of each fire pump and pickup locations are depicted in Figures 1 through "A list of abbreviation for pickup locations is shown in Table 2. The transducer pickup placement is uniaxial with one radial pickup at each bearing and one axial pickup at the thrust bearing. This arrangement is listed in the Vibration Test and Analysis Guide (VTAG) [Ref.8]. This guide provides the most current technical information for each machine in a particular ship class and includes information on pickup locations, operating conditions and a table of vibration source components. Table 3 through Table 5 summarize the vibration source components. These tables identify exciting elements within each machine and list the vibration frequencies generated by each element. The vibration frequencies were normalized as multiples of the machine's rotation rate, called "orders". The time waveforms are recorded on magnetic tape by a frequency modulated (FM) recorder. Each pickup location on the pumps was recorded for a one minute time series record. Some of the important specifications of the tape recorder are provided in Table 6. In addition to the data tapes, six survey dates of data in ASCII form were received from the NAVSSES database. These data contain the frequency spectrum levels measured by vibrometer. TABLE 2: ABBREVIATIONS OF PICKUP LOCATION | Abbreviation | Description | |--------------|--| | MB(FE) | Motor Bearing (Free End) | | MB(CE) | Motor Bearing (Coupling End) | | MB(CE/A) | Motor Bearing (Coupling End/Axial direction) | | PB(FE) | Pump Bearing (Free End) | | PB(CE) | Pump Bearing (Coupling End) | | PB(CE/A) | Pump Bearing (Coupling End/Axial direction) | | UMB | Upper Motor Bearing | | LMB | Lower Motor Bearing | | LMB(A) | Lower Motor Bearing (Axial direction) | | UPB | Upper Pump Bearing | | LPB | Lower Pump Bearing | Figure 1 Schematic Layout of a Type I Fire Pump TABLE 3: VIBRATION SOURCE COMPONENTS OF TYPE I FIRE PUMP | Driver |
(Motor) | | Drive | en (Pump) | | |---------------------|-------------|----------|----------------|-----------|-------------| | Description | Element | Order | Description | Element | Order | | Motor Shaft (Ref.) | | 1 | Pump Shaft | | 1 | | Fan Blading | 5 | 5 | Impeller Vanes | 6 | 6 | | Slots | 54 | 54 | Bearing | FAG WT | | | Bars | 44 | 44 | | | | | Poles | 2 | 2 | | | | | Bearing | MRC | 310 | | | | | Bearing | MRC | 311 | | | | | Operation Condition | of Motor is | 3595 RPN | A (=59.9 Hz) | | | Figure 2 Schematic Layout of a Type II Fire Pump TABLE 4: VIBRATION SOURCE COMPONENTS OF TYPE II FIRE PUMP | Driver | (Motor) | | Drive | en (Pump) | | |---------------------|-------------|----------|----------------|-----------|----------| | Description | Element | Order | Description | Element | Order | | Motor Shaft (Ref.) | | 1 | Pump Shaft | | 1 | | Fan Blading | 7 | 7 | Impeller Vanes | 5 | 5 | | Slots | 48 | 48 | Bearing | SKF | 306 | | Bars | 38 | 38 | | | | | Poles | 2 | 2 | | | | | Bearing | MRC | 310 | | | • | | Bearing | MRC | 311 | | | | | Operation Condition | of Motor is | 3555 RPN | A (=59.3 Hz) | | <u> </u> | Figure 3 Layout of a Type III Fire Pump TABLE 5: VIBRATION SOURCE COMPONENTS OF TYPE III FIRE PUMP | Driver (Motor) | | | Driven (Pump) | | | |--------------------|---------|--------|----------------|---------|-------| | Description | Element | Order | Description | Element | Order | | Motor Shaft (Ref.) | | 1 | Pump Shaft | | 1 | | Poles | 2 | 2 | Impeller Vanes | 5 | 5 | | Bearing | Ball B | earing | Bearing | SKF | 6307 | TABLE 6: SPECIFICATIONS OF FM RECORDER | Manufacture | Dallas Instruments Inc. | | |-----------------------|--------------------------|--| | Model | 4800 FM Recorder | | | Frequency Response | 2 to 5000 Hz within 1 dB | | | Signal to Noise Ratio | 40 dB rms | | | Harmonic Distortion | No harmonic above -40 dB | | | Tape Type | TDK AD C60 cassette | | #### B. Alarm Level The fundamental question that must be answered before vibration condition monitoring can be used as a diagnostic tool for machinery is what alarm levels identify operation-limiting faults. Generally, the vibrations of a system can be characterized by a reduced data set in various domains. The criteria used to set alarm levels can be considered either in the time domain or the frequency domain, as discussed below. #### 1. Time Domain Criteria #### a. Vibration Severity Criterion Method The simplest time domain method is the vibration severity criterion. The root mean square (RMS) value of vibration velocity is usually measured and compared with vibration severity charts [Ref. 9]. Figure 4 shows the vibration severity chart that was first introduced by T. C. Rathbone in 1939 and then later refined by the Instrument Research and Development Corporation. Various national standard organizations have also published standards for judging vibration severity. For example, International Standards Organization (ISO) standards 2372 and 3945 provide severity guidelines for machinery. Figure 4 General Machinery Vibration Severity Chart [Ref. 9] The disadvantages in using these criteria are [Ref. 10]: - The criteria can be used only for specific types of machinery at a standard operating condition. - No diagnostic information is provided. - The criteria are less sensitive during the early stages of damage. Thus, the vibration severity criterion method can be only used as a rough indicator of machinery health. #### b. Amplitude Probability Criterion Method A More sophisticated method was developed using statistical analysis to examine the distribution of vibration amplitudes. The amplitudes used can be either peak-to-peak, peak or RMS readings of displacement, velocity or acceleration. Both Campel [Ref. 11] and Murphy [Ref. 12] use this statistical method to establish alarm levels based on the mean of the reading plus 3 standard deviations. The key drawback of this approach is that it assumes that a Normal distribution of the linear readings exists. Vibration readings have a "skewed" rather than "Normal" distribution [Ref. 13]. #### 2. Frequency Domain Criteria #### a. Rroadband Criterion Method The broadband criterion method utilizes a vibrometer which can add all the energy dissipated over a wide frequency range (typically 10 to 10,000 Hz). The overall energy is typically calculated by applying the RMS summation method to the spectrum. If the overall energy level exceeds a predetermined level, then alarms are triggered. This is a simple and effective method in most cases. But in some cases may be inadequate because it is less sensitive to small changes associated with bearing defects in the presence of large amplitude frequency components. This limitation can be overcome by using the octave band or narrow band method. #### b. Octave Band Criterion Method The octave band criterion method is often used in acoustics to determine the energy level changes due to noise and vibration. This method utilizes a constant percentage bandwidth to divide the frequency range of interest into several bands which provide more detailed information than the broadband presentation. A commonly used bandwidth is the one-third octave band. Early researchers used this method to check the change in each band level and determine if the amplitudes exceeded normal values [Ref. 14-15]. Chapter III discusses this method in detail. #### c. Narrowband Criterion Method Since the broadband and the octave band criteria methods lack detailed vibration information, a narrowband criterion method is gaining popularity. The bandwidth may be up to 10% of the center frequency range (typically 10 to 1,000 Hz). The improved resolution is generally up to 400 or 800 lines over the frequency range of interest. With knowledge of the forcing frequencies of rotating components, the narrowband data is very useful for diagnosing specific faults. This diagnosis can be time consuming; it is also often difficult to explain the source of some of the peaks in the spectra. Frequency criteria are used in U.S. Navy surface ship to establish alarm settings for machinery [Ref. 3]. Vibration data for each individual machine and location are processed to yield mean and standard deviation values from frequency spectra data. Generally, broadband levels are used as a screening tools, and narrowband levels are used as diagnostic tools. #### IIL METHODS OF ANALYSIS #### A. DATA ACQUISITION AND PROCESSING SYSTEM A block diagram of the data acquisition and analysis system used is depicted in Figure 5. The Model 4800 FM recorder plays back the machinery vibration data tapes to generate an analog signal. By using a connector, this analog signal is distributed to the data acquisition software and the oscilloscope simultaneously. The oscilloscope controls the quality of the data by monitoring the signal time waveform. The EASYEST™ LX software, developed by Keithley Asyst, was used as a data acquisition system. This PC-based data acquisition system allowed us to digitize analog signals, convert the units from voltage to velocity and store the velocity data sequences into the hard disk of a personal computer. Finally, MATLAB software was used to retrieve these data sequences and perform data processing. MATLAB is a very powerful software tool for signal processing. All programs used in this research were written using MATLAB. The synopsis, on-line help documentation and program code used can be found in Appendix A. Examples for the use of these programs to perform the analysis are included in Appendix B. All of the data sets were sampled at a sampling frequency of 10 kHz. The sampling duration for each data set was 36.684 seconds. Figure 5 Block Diagram of Data Acquisition And Processing System #### B. TIME DOMAIN - CROSS PEAK ANALYSIS It is obvious that the peak envelope distribution of vibration time domain signals is relevant to the vibration severity of machinery component. Vibration severity criteria which uses measured RMS values to determine the severity of component vibration without considering the dispersion of the signal is truly a rough guess. A better approach is to represent the severity of component vibration in terms of a percentage acceptance level. The percentage acceptance level provides the percentage of outcomes which will not exceed this level threshold. For a Normal distribution, the acceptance level is closely related to the mean (μ) and standard deviation (σ). For example, $\mu+1.96\sigma$ corresponds to a 97.5% acceptance level which means only a 2.5% probability the signal amplitude will exceed the $\mu+1.96\sigma$ value. For the sake of simplicity, the most popular assumption to assume the probability distribution of the signal was a Gaussian (or Normal) distribution. However, for rotational machinery vibration, since we are only concern with the magnitude of the signal, the probability density function has a skewed rather than a Normal distribution. At this point, it is worthwhile to review the statistical moments and central moments of a random variable [Ref.16]. For the discrete random variable x with probability Pr(x), the nth moment $E(x^n)$ is defined as: $$E(x^n) = \sum_{k=1}^n x_k^n Pr(x_k)$$ (1) The first moment is particularly important in many applications and is given the name mean value (μ): $$\mu_x = E(x) = \sum_{k=1}^{n} x_k Pr(x_k)$$ (2) Of greater significance are the central moments which defined as: $$E[(x - \mu_x)^n] = \sum_{k=1}^{\infty} (x_k - \mu_x)^n Pr(x_k)$$ (3) The central moment for n=1 is zero. The central moment for n=2 is a very important which quantity called the variance of the random variable; $$E[(x-\mu_x)^2] = \sum_{k=1}^{\infty} (x_k - \mu_x)^2 Pr(x_k)$$ (4) The standard deviation, which corresponds to the dispersion of the random variable, can be obtained by taking the square root of the variance, i.e., $$\sigma = \sqrt{Variance} \tag{5}$$ As noted earlier, the mean and standard deviation are
often used to compute the acceptance level. The higher order central moments (n>2) are often normalized by dividing by the nth power of the standard deviation. The third and fourth normalized central moments are primarily used to indicate the shape of the probability density function. They are defined by the following equations: $$Skewness = \frac{E[(x - \mu_x)^3]}{\sigma^3}$$ (6) $$Kurtosis = \frac{E[(x-\mu_x)^4]}{G^4}$$ (7) The skewness shows information about the position of the peak density relative to the mean value. The kurtosis indicate the spread in the distribution. For a perfect Normal distribution, the skewness is zero and the kurtosis is three. Since we are interested in the peak envelope distribution of the vibration signal, we use the cross peak data points instead of the overall peak data points. The cross peak technique can extract the dominant component from a complicated time waveform data set by selecting the maximum peak value between every zero crossing. Figure 6 illustrates the difference between overall peak and cross peak points. As we will see in Chapter IV, the probability distributions of cross peak points have highly positive skewness and can be approximated as a lognormal distribution. This means that the distributions will become normal if the data is transformed by a log or natural log algorithm. The method chosen to accomplish this transformation was to convert the linear velocity reading to velocity dB (VdB) reading. The VdB is defined as: $$Velocity(VdB) = 20 \log \frac{V}{V_{ref}}$$ (8) where V_{ref} is the reference level, normally $0 \text{VdB} = 10^{-8} \text{ m/sec.}$ Figure 7 shows a flow chart for our cross peak analysis technique. First, the sampled data is imported into a MATLAB worksheet. The DC offset is then removed by subtracting the mean value of the sampled data. The cross peak points between every zero crossing is then found using a subroutine. As can be seen from Table 1, the dynamic range of the tape recorder is 40 dB. This means that amplitude smaller than 1% of the maximum peak may be contaminated by noise. For this reason, we set a 1% threshold to eliminate these contaminated points. Equation 8 was then used to transform the linear velocity scale into the VdB domain. The reference 0VdB was 10⁻⁸ m/sec. After we computed the mean, standard deviation, skewness and kurtosis, plots of the probability density function were generated. Finally, the statistical analysis report can be sent to laser printer. Figure 6 Comparison of Overall Peak and Cross Peak Points (a) Overall Peak Points (b) Cross Peak Points Figure 7 Cross Peak Analysis Flow Chart #### C. FREQUENCY DOMAIN - 1/1 OCTAVE BAND ANALYSIS This method divides the frequency spectrum into constant percentage bands having the same ratio of bandwidth to center frequency [Ref. 17]. Each band has an upper frequency limit (f_2) and lower frequency limit (f_1) . The center frequency (f_c) of any band is defined as $$f_c = \sqrt{f_1 f_2} \tag{9}$$ The ratio of center frequencies of successive proportional bands is the same as f_2/f_1 for any one band. i.e., $$\frac{f_c}{f_1} = \frac{f_2}{f_c} = \sqrt{\frac{f_2}{f_1}} = 2^{n/2} \tag{10}$$ One third of an octave is defined as n=1/3. The American National Standards Institute (ANSI) preferred center frequencies and pass bands for 1/3 octave bands is tabulated at Table 7. The method chosen to examine the frequency domain alarm levels in this research was to use 1/1 octave bands (n=1). For the 10-5,000 Hz frequency range of our system, the frequency spectrum can be divided into 9 bands using the ANSI preferred center frequencies. The center frequencies and pass bands covering the frequency range 10-5,000 Hz in 1/1 octave bands are given in Table 8. TABLE 7: ANSI PREFERRED CENTER FREQUENCIES AND PASS BANDS FOR 1/3 OCTAVE BAND | Center | Pass Band (Hz) | | | |----------------|----------------|-------------|--| | Frequency (Hz) | Lower Limit | Upper Limit | | | 12.5 | 12 | 14 | | | 16 | 14 | 18 | | | 20 | 18 | 22.4 | | | 25 | 22.4 | 28 | | | 31.5 | 28 | 35.5 | | | 40 | 35.5 | 45 | | | 50 | 45 | 56 | | | 63 | 56 | 71 | | | 80 | 71 | 90 | | | 100 | 90 | 112 | | | 125 | 112 | 140 | | | 160 | 140 | 180 | | | 200 | 180 | 224 | | | 250 | 224 | 280 | | | 315 | 280 | 355 | | | 400 | 355 | 450 | | | 500 | 450 | 560 | | | 630 | 560 | 710 | | | 800 | 710 | 890 | | | 1000 | 890 | 1120 | | | 1250 | 1120 | 1400 | | | 1600 | 1400 | 1800 | | | 2000 | 1800 | 2240 | | | 2500 | 2240 | 2800 | | | 3150 | 2800 | 3550 | | | 4000 | 3550 | 4500 | | | 5000 | 4500 | 5600 | | | 6300 | 5600 | 7100 | | | 8000 | 7100 | 9000 | | | 10000 | 9000 | 11200 | | TABLE 8: ANSI PREFERRED CENTER FREQUENCIES AND PASS BANDS FOR 1/1 OCTAVE BAND | Center
Frequency (Hz) | Pass Band (Hz) | | | |--------------------------|----------------|-------------|--| | | Lower Limit | Upper Limit | | | 16 | 11.2 | 22.4 | | | 31.5 | 22.4 | 45 | | | 63 | 45 | 90 | | | 125 | 90 | 180 | | | 250 | 180 | 355 | | | 500 | 355 | 710 | | | 1000 | 710 | 1400 | | | 2000 | 1400 | 2800 | | | 4000 | 2800 | 5600 | | | 8000 | 5600 | 11200 | | Figure 8 shows the flow chart for our 1/1 octave band analysis using the MATLAB program developed. This technique used frequency domain data to compute the 1/1 octave band levels. In order to have better resolution at lower frequency, it was necessary to use two spectrum data with different sampling frequencies. For the time domain data, the lower sampling frequency spanned 2 kHz and the higher sampling frequency spanned 10 kHz. Twenty blocks of data is sampled at each sampling frequency, a block of data being 2048 data points. After sampling, a FFT was performed for each block with a Hanning window to obtain the smoothed linear velocity spectrum. The averaging VdB spectrum was then produced by transforming the linear spectrum to the VdB domain and taking an average over the 20 data blocks. For the frequency domain data received from the NAVSSES database, 10 order and 100 order data sets were used as the lower frequency spectrum and higher frequency spectrum, respectively. The 1st through 6th 1/1 octave band levels were then computed using the lower frequency sampling spectrum and the 7th through 9th 1/1 octave band levels obtained using the higher frequency sampling spectrum. Finally, the 1/1 octave band analysis was done after combining these two ranges into 9 band levels. Figure 8 Flow Chart of 1/1 Octave Band Analysis Technique #### IV. RESULTS OF USING TIME WAVEFORM TAPES #### A. CROSS PEAK ANALYSIS #### 1. Probability Distribution of Cross Peaks The available data was digitized and then grouped into three types after examination of the spectrum patterns. Typical time series and frequency spectrums for each type of fire pump are depicted in Figure 9 through Figure 11. The data collection sheets are summarized in Table 9 through Table 13 for each class of ship. One set of data is missing; the actual number of data sets analyzed was 134. The operation speed of the shaft was selected as a reference speed. This speed was used to normalize the frequency scale into "orders". The "B.B. Level" is the broadband level measured by vibrometer when the data was recorded. This level represents the total energy of the velocity reading for each measurement. The full scale represent the calibration factor. The "B.B. Alm Level" is the broadband alarm level set by NAVSSES using the vibrometer reading data. Both the "B.B. Level" and "B.B. Alm Level" was measured for a frequency range from 10 Hz to 10,000 Hz. The remarks column describes the quality of the data set. In order to understand the distributions of the cross peak points, probability histograms for each set of data were plotted using linear velocity scale. Figure 12 and Figure 13 give an example of probability histograms for type I fire pumps measured at MB(FE). Inspection of these histograms shows the distributions to have an exponential shape for the most part. With a linear velocity scale, this type of distribution means that the population is mainly dominated by small peaks which is an expected result for machinery in good condition. Those distributions having a large population at higher amplitudes are regarded as representing damaged pumps. Examination of these damaged data sets shows their broadband levels to be higher than the others and closer to the broadband alarm levels. Figure 9 Typical Time Series and Frequency Spectrum of Type I Fire Pumps (10/30/89) Measured at MB(FE) Figure 10 Typical Time Series and Frequency Spectrum of Type II Fire Pumps Measured at MB(FE) Figure 11 Typical Time Series and Frequency Spectrum of Type III Fire Pumps (3/10/89) Measured at UMB TABLE 9: DATA COLLECTION SHEET FOR TYPE I (10/30/89) FIRE PUMPS | Machine
Name | Speed
(RPM) | Pickup
Location | B.B.
Level
(VdB) | Full
Scale
(VdB) | B.B. Alm
Level
(VdB) | Remarks | |-----------------|----------------|--------------------|------------------------|------------------------|----------------------------|----------| | | | MB(FE) | 99 | 120 | 107 | | | Fire Pump | 3595 | MB(CE) | 102 | 120 | 109 | | | #1 | 3393 | PB(CE) | 110 | 120 | 118 | | | | | PB(FE) | 111 | 120 | 119 | | | | | PB(FE/A) | 114 | 120 | 121 | | | | | MB(FE) | 97 | 100 | 107 | | | Fire Pump | 2505 | MB(CE) | 101 | 120 | 109 | | | #2 | 3595 | PB(CE) | 108 | 120 | 118 | <u> </u> | | | | PB(FE) | 106 | 120 | 119 | | | | | PB(FE/A) | 107 | 120 | 121 | | | | | MB(FE) | 97 | 100 | 107 | | | Fire Pump | 2505 | MB(CE) | 100 | 120 | 109 | | | #3 | 3595 | PB(CE) | 111 | 120 | 118 | | | | | PB(FE) | 109 | 120 | 119 | | | | | PB(FE/A) | 113 | 120 | 121 | | | | | MB(FE) | 100 | 120 | 107 | | | Fire Pump | 2505 | MB(CE) | 100 | 120 | 109 | | | #4 | 3595 | PB(CE) | 108 | 120 | 118 | | | | | PB(FE) | 110 | 120 | 119 | | | | | PB(FE/A) | 111 | 120 | 121 | | | | | MB(FE) | 100 | 120 | 107 | | | Fire Pump | 2505 | MB(CE) | 101 | 120 | 109 | | | #5 | 3595 | PB(CE) | 110 | 120 | 118 | | | | |
PB(FE) | 111 | 120 | 119 | | | | | PB(FE/A) | 114 | 120 | 121 | | | | | MB(FE) | 99 | 120 | 107 | | | Fire Pump | 2505 | MB(CE) | 100 | 120 | 109 | | | #6 | 3595 | PB(CE) | 113 | 120 | 118 | Damaged | | | | PB(FE) | 111 | 120 | 119 | | | | | PB(FE/A) | 111 | 120 | 121 | | TABLE 10: DATA COLLECTION SHEET FOR TYPE I (2/26/90) FIRE PUMPS | Machine
Name | Speed
(RPM) | Pickup
Location | B.B.
Level
(VdB) | Full
Scale
(VdB) | BB Alm
Level
(VdB) | Remarks | |-----------------|----------------|--------------------|------------------------|------------------------|--------------------------|---------| | | | MB(FE) | 98 | 100 | 107 | | | Fire Pump | 3595 | MB(CE) | 97 | 100 | 109 | | | #1 | 3393 | PB(CE) | 106 | 120 | 118 | | | | | PB(FE) | 110 | 120 | 119 | | | ļ | | PB(FE/A) | 111 | 120 | 121 | | | | | MB(FE) | 97 | 120 | 107 | | | Fire Pump | 3595 | MB(CE) | 96 | 120 | 109 | | | #2 | 3393 | PB(CE) | 108 | 120 | 118 | | | | | PB(FE) | 107 | 120 | 119 | | | | · •·I | PB(FE/A) | 108 | 120 | 121 | | | | | MB(FE) | 99 | 120 | 107 | | | Fire Pump | 2505 | MB(CE) | 100 | 120 | 109 | | | #3 | 3595 | PB(CE) | 116 | 120 | 118 | Damaged | | | | PB(FE) | 115 | 120 | 119 | Damaged | | | | PB(FE/A) | 117 | 120 | 121 | | | | | MB(FE) | 98 | 120 | 107 | | | Fire Pump | 2505 | MB(CE) | 97 | 120 | 109 | | | #4 | 3595 | PB(CE) | 108 | 120 | 118 | | | | | PB(FE) | 111 | 120 | 119 | | | | | PB(FE/A) | 112 | 120 | 121 | | | | | MB(FE) | 99 | 120 | 107 | | | Fire Pump | 2505 | MB(CE) | 101 | 120 | 109 | | | #5 | 3595 | PB(CE) | 109 | 120 | 118 | | | | | PB(FE) | 110 | 120 | 119 | | | 1 | | PB(FE/A) | 113 | 120 | 121 | | | | | MB(FE) | 99 | 120 | 107 | | | Fire Pump | 2505 | MB(CE) | 98 | 120 | 109 | | | #6 | 3595 | PB(CE) | 115 | 120 | 118 | Damaged | | | | PB(FE) | 112 | 120 | 119 | | | | | PB(FE/A) | 113 | 120 | 121 | | TABLE 11: DATA COLLECTION SHEET FOR TYPE II FIRE PUMPS | Machine
Name | Speed
(RPM) | Pickup
Location | B.B.
Level
(VdB) | Full
Scale
(VdB) | BB Alm
Level
(VdB) | Remarks | |-----------------|----------------|--------------------|------------------------|------------------------|--------------------------|----------| | | | MB(FE) | 97 | 120 | 108 | | | Fire Pump | 3555 | MB(CE) | 99 | 120 | 112 | Bad Data | | #1 | 3333 | MB(CE/A) | 110 | 120 | 112 | | | | | PB(CE) | 110 | 120 | 117 | | | | | PB(FE) | 109 | 120 | 119 | | | | | MB(FE) | 91 | 100 | 108 | | | Fire Pump | | MB(CE) | 99 | 120 | 112 | | | #2 | 3555 | MB(CE/A) | 107 | 120 | 112 | | | | | PB(CE) | 108 | 120 | 117 | | | | | PB(FE) | 109 | 120 | 119 | | | | | MB(FE) | 102 | 120 | 108 | | | Fire Pump | | MB(CE) | 103 | 120 | 112 | | | #3 | 3555 | MB(CE/A) | 112 | 120 | 112 | | | | | PB(CE) | 113 | 120 | 117 | | | | | PB(FE) | 116 | 120 | 119 | | TABLE 12: DATA COLLECTION SHEET FOR TYPE III (11/24/89) FIRE PUMPS | Machine
Name | Speed
(RPM) | Pickup
Location | B.B.
Level
(VdB) | Full
Scale
(VdB) | BB Alm
Level
(VdB) | Remarks | |-----------------|----------------|--------------------|------------------------|------------------------|--------------------------|---------| | | | UMB | 110 | 120 | 108 | Damaged | | Fire Pump | | LMB | 111 | 120 | 110 | Damaged | | #1 | 3570 | LMB(A) | 103 | 120 | 108 | | | | | UPB | 117 | 120 | 120 | Damaged | | | | LPB | 112 | 120 | 121 | | | | | UMB | 97 | 120 | 108 | | | Fire Pump | | LMB | 98 | 120 | 110 | | | #2 | 3570 | LMB(A) | 98 | 120 | 108 | | | | | UPB | 107 | 120 | 120 | | | | | LPB | 105 | 120 | 121 | | | | | UMB | 101 | 120 | 108 | | | Fire Pump | | LMB | 104 | 120 | 110 | | | #3 | 3570 | LMB(A) | 101 | 120 | 108 | | | | | UPB | 109 | 120 | 120 | | | | | LPB | 111 | 120 | 121 | | | | | UMB | 98 | 120 | 108 | | | Fire Pump | | LMB | 103 | 120 | 110 | | | #4 | 3570 | LMB(A) | 98 | 120 | 108 | | | | | UPB | 114 | 120 | 120 | | | | | LPB | 113 | 120 | 121 | | TABLE 13: DATA COLLECTION SHEET FOR TYPE III (3/10/89) FIRE PUMPS | Machine
Name | Speed
(RPM) | Pickup
Location | B.B.
Level
(VdB) | Full
Scale
(VdB) | BB Alm
Level
(VdB) | Remarks | |-----------------|----------------|--------------------|------------------------|------------------------|--------------------------|---------| | | | UMB | 98 | 120 | 108 | | | Fire Pump | | LMB | 99 | 120 | 110 | | | #1 | 3570 | LMB(A) | 97 | 120 | 108 | | | | | UPB | 110 | 120 | 120 | | | | | LPB | 106 | 120 | 121 | | | | | UMB | 96 | 120 | 108 | | | Fire Pump | | LMB | 104 | 120 | 110 | Missing | | #2 | 3570 | LMB(A) | 102 | 120 | 108 | | | | | UPB | 117 | 140 | 120 | | | | | LPB | 114 | 140 | 121 | | | | - | UMB | 105 | 120 | 108 | | | Fire Pump | | LMB | 102 | 120 | 110 | | | #3 | 3570 | LMB(A) | 101 | 120 | 108 | | | | | UPB | 111 | 120 | 120 | | | | | LPB | 107 | 120 | 121 | | | | | UMB | 96 | 100 | 108 | | | Fire Pump | | LMB | 102 | 120 | 110 | | | #4 | 3570 | LMB(A) | 99 | 120 | 108 | | | | | UPB | 114 | 120 | 120 | | | | | LPB | 109 | 120 | 121 | | Figure 12 The Probability Distributions of Cross Peak Data for Type I (10/30/89) Fire Pumps Measured at MB(FE) Figure 13 The Probability Distributions of Cross Peak Data for Type I (2/26/90) Fire Pumps Measured at MB(FE) #### 2. Statistical Analysis Results As mentioned before, the distributions of the cross peak points in a linear velocity scale have an exponential shape histogram. This shape histogram can be approximated as a lognormal distribution. Because a velocity decibel is a unit of measurement equal to the logarithm of the ratio V/V_{ref} it is convenient to use the VdB transformation to convert an exponential shaped distribution into a Normal distribution. Before we applied this transform, the 1% threshold was used to remove distorted data. The data sets with same type of fire pump and same pickup location were then added together to form a combined data set to perform the statistical analysis. The results are collected in Appendix C. Figure C.1 through Figure C.15 present the statistical analysis results for all of the available data. Figure C.16 through Figure C.21 show the statistical analysis results without including the damaged data sets. Table 14 tabulates these results in the linear velocity and VdB domains. A comparison of alarm thresholds between the broadband alarm levels (B.B. Alm. Level) and the computed $\mu+2\sigma$ level is shown in Table 15. It should be mentioned that these two alarm thresholds are based on different methods using data from different domains. The broadband alarm level, as noted earlier, is obtained by using vibrometer readings in the frequency domain. The computed $\mu+\sigma$ levels represent the 97.5% acceptance level of the cross peak envelopes in the VdB domain. Several observations can be made: - The distribution of the cross peak points in the linear velocity domain have a highly positive skew. This can be treated as a lognormal distribution. - By using the Vdb transformation, the distributions in the linear velocity domain can be transformed to Normal or near Normal distributions. Generally speaking, the data sets at pickup locations for the motor have a skewness less than 0.1 and the data sets at pickup locations for the pump ends have a skewness varying between 0.1 and 0.5. - As can be seen from Table 14, removing the damaged data sets does not cause the probability distributions in the Vdb domain to become much closer to Normal as measured by the skewness and kurtosis. For the MB(CE) pickup location of a type II pump, not considering the damaged pump data sets makes the skewness even more severe than when the damaged pump data sets are considered. Since there were only 3 type II pumps, this result is not surprising. - In general, the B.B. Alarm Levels and computed $\mu+2\sigma$ levels in the VdB domain are quite close. The relative errors between these two methods for Type I fire pumps are less than 5%. It is also noted from Table 15 that the computed $\mu+2\sigma$ levels in cases with small skewness is closer to the broadband alarm levels than in cases with high skewness. This is because the computed $\mu+2\sigma$ levels for the Normal distribution is very sensitive to skewness. TABLE 14: STATISTICAL ANALYSIS RESULTS FOR CROSS PEAK POINTS | | Pickup | Lin | Linear Velocity Domain | | | | VdB Domain | | | | | |------|----------|-------------|------------------------|-------------|------------|------------|------------|--------|-------|--|--| | Туре | Position | μ
(mm/s) | O
(mm/s) | Skew. Kurt. | μ
(VdB) | σ
(VdB) | Skew. | Kurt. | | | | | | MB(FE) | 0.495 | 0.533 | 1.850 | 6.201 | 89.36 | 9.20 | -0.046 | 2.378 | | | | | MB(CE) | 0.539 | 0.608 | 2.052 | 7.195 | 90.20 | 9.12 | 0.049 | 2.444 | | | | | PB(CE) | 2.828 | 2.680 | 1.517 | 5.638 | 104.6 | 9.78 | -0.444 | 2.476 | | | | I | PB(FE) | 2.717 | 2.681 | 1.253 | 3.959 | 103.6 | 10.45 | -0.335 | 2.232 | | | | | PB(FE/A) | 3.699 | 3.307 | 1.086 | 3.515 | 106.9 | 9.90 | -0.519 | 2.472 | | | | | PB(CE)* | 2.319 | 1.988 | 1.046 | 3.304 | 103.3 | 9.25 | -0.510 | 2.506 | | | | | PB(FE)* | 2.525 | 2.472 | 1.169 | 3.409 | 103.0 | 10.30 | -0.317 | 2.228 | | | | | MB(FE) | 0.504 | 0.604 | 2.059 | 6.976 | 88.4 | 10.50 | -0.139 | 2.420 | | | | | MB(CE) | 0.727 | 0.763 | 3.243 | 66.02 | 93.1 | 8.78 | -0.022 | 2.320 | | | | п | MB(CE/A) | 2.148 | 2.493 | 1.321 | 3.604 | 100.0 | 11.49 | 0.019 | 1.926 | | | | " | PB(CE) | 2.484 | 2.344 | 0.905 | 2.675 | 102.6 | 10.84 | -0.368 | 2.038 | | | | | PB(FE) | 2.166 | 2.739 | 2.008 | 6.446 | 100.8 | 10.29 | 0.113 | 2.366 | | | | | MB(CE)* | 0.619 | 0.811 | 2.146 | 6.762 | 90.5 | 9.19 | 0.495 | 2.566 | | | | | UMB | 0.672 | 0.926 | 4.985 | 36.52 | 92.1 | 8.69 | 0.029 | 2.953 | | | | | LMB | 0.923 | 1.046 | 3.350 | 19.59 | 95.3 | 8.56 | -0.077 | 2.697 | | | | | LMB(A) | 0.703 | 0.648 | 1.881 | 7.538 | 93.3 | 8.46 | -0.349 | 2.663 | | | | Ш | UPB | 4.141 | 4.442 | 1.570 | 5.446 | 106.1 | 11.84 | -0.408 | 2.207 | | | | "" | LPB | 3.160 | 3.246 | 1.779 | 6.775 | 105.1 | 10.20 | -0.373 |
2.430 | | | | | UMB* | 0.597 | 0.602 | 2.488 | 11.46 | 91.8 | 8.34 | -0.167 | 2.595 | | | | | LMB* | 0.776 | 0.736 | 1.980 | 7.430 | 94.3 | 8.15 | -0.181 | 2.555 | | | | | UPB* | 3.603 | 3.906 | 1.711 | 6.361 | 105.1 | 11.60 | -0.367 | 2.176 | | | ^{*:} The statistical analysis results without considering the damaged data sets. TABLE 15: COMPARISON OF COMPUTED μ +2 σ LEVEL AND BROADBAND ALARM LEVEL | Туре | Pickup
Position | Skewness | μ
(VdB) | σ
(VdB) | μ+2σ
(VdB) | B.B.Alarm
Level
(VdB) | Relative
Error | |------|--------------------|----------|------------|------------|---------------|-----------------------------|-------------------| | | MB(FE) | -0.046 | 89.36 | 9.20 | 107.8 | 107 | 0.71% | | | MB(CE) | 0.049 | 90.20 | 9.12 | 108.3 | 109 | -0.68% | | | PB(CE) | -0.444 | 104.6 | 9.78 | 124.2 | 118 | 4.95% | | I | PB(FE) | -0.335 | 103.6 | 10.45 | 124.5 | 119 | 4.42% | | | PB(FE/A) | -0.519 | 106.9 | 9.90 | 126.7 | 121 | 4.50% | | | PB(CE)* | -0.510 | 103.3 | 9.25 | 121.8 | 118 | 3.11% | | | PB(FE)* | -0.317 | 103.0 | 10.30 | 123.6 | 119 | 3.72% | | | MB(FE) | -0.139 | 88.4 | 10.50 | 109.4 | 108 | 1.27% | | | MB(CE) | -0.022 | 93.1 | 8.78 | 110.6 | 112 | -1.25% | | П | MB(CE/A) | 0.019 | 100.0 | 11.49 | 123.0 | 112 | 8.91% | | 11 | PB(CE) | -0.368 | 102.6 | 10.84 | 124.3 | 117 | 5.86% | | | PB(FE) | 0.113 | 100.8 | 10.29 | 121.4 | 119 | 1.96% | | | MB(CE)* | 0.495 | 90.5 | 9.19 | 108.9 | 118 | -8.37% | | | UMB | 0.029 | 92.1 | 8.69 | 109.5 | 108 | 1.40% | | | LMB | -0.077 | 95.3 | 8.56 | 112.4 | 110 | 2.11% | | | LMB(A) | -0.349 | 93.3 | 8.46 | 110.2 | 108 | 2.04% | | Ш | UPB | -0.408 | 106.1 | 11.84 | 129.8 | 120 | 7.54% | | III | LPB | -0.373 | 105.1 | 10.20 | 125.5 | 121 | 3.59% | | | UMB* | -0.167 | 91.8 | 8.34 | 108.5 | 108 | 0.44% | | | LMB [*] | -0.181 | 94.3 | 8.15 | 110.6 | 110 | 0.52% | | | UPB* | -0.367 | 105.1 | 11.60 | 128.3 | 120 | 6.47% | ^{*:} The statistical analysis results without considering the damaged data sets. #### B. 1/1 OCTAVE BAND ANALYSIS # 1. 1/1 Octave Band Analysis Results The 1/1 octave band analysis was performed for all types of fire pumps with the time domain data. Band 1 through band 6 were computed by using $f_s=2$ kHz to provide better resolution at lower frequencies. Band 7 to band 9 were computed by using $f_s=10$ kHz. Figure 14 through Figure 16 show the summarized 1/1 octave band levels for each type of fire pump without considering the damaged data sets. The 10-5,000 Hz broadband levels are also shown on these plots. It was computed by adding all the VdB spectrum using a RMS algorithm. The means (μ) and standard deviations (σ) of each octave band levels for the same type fire pumps with the same pickup locations was also computed. The thin line represents the mean (μ) band level and the thick line represents the mean plus one standard deviation ($\mu+\sigma$) band level. Table 16 tabulates these band levels. Generally speaking, the dominate levels are located in the first six bands (10 to 710 Hz). This implies that the energy of vibration is concentrated at lower frequencies. For fire pumps with a 3555 RPM operation speed, these bands are approximated up to 12 orders. Upon examination of the third band through the sixth band for each data set, it is obvious that the band levels for damaged data sets are higher than the for undamaged pump data sets. Figure 14 The Summarized 1/1 Octave Band Levels for Type I Fire Pumps Figure 14 The Summarized 1/1 Octave Band Levels for Type I Fire Pumps (Cont.) Figure 15 The Summarized 1/1 Octave Band Levels for Type II Fire Pumps Figure 15 The Summarized 1/1 Octave Band Levels for Type II Fire Pumps (Cont.) Figure 16 The Summarized 1/1 Octave Band Levels for Type III Fire Pumps Figure 16 The Summarized 1/1 Octave Band Levels for Type III Fire Pumps (Cont.) TABLE 16: SUMMARIZED MEAN (μ) AND STANDARD DEVIATION (σ) OF 1/1 OCTAVE BAND LEVELS | Туре | Pickup
Location | | | | | | | | | | | |----------|--------------------|---|------|------|-------|-------|-------|-------|------|--------------|------| | | Location | | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | | | MR(FF) | μ | 84.5 | 75.5 | 95.0 | 88.3 | 83.4 | 81.3 | 69.4 | 70.3 | 73.4 | | | MB(FE) | σ | 4.87 | 3.59 | 1.56 | 1.09 | 2.72 | 3.34 | 4.84 | 4.16 | 4.70 | | | MB(CE) | μ | 78.9 | 81.8 | 95.5 | 91.3 | 83.6 | 83.0 | 72.5 | 71.2 | 75.1 | | 1 | WID(CL) | σ | 4.48 | 5.49 | 1.79 | 2.54 | 1.34 | 2.42 | 1.09 | 1.95 | 3.45 | | ı | PB(CE) | 4 | 83.2 | 85.9 | 101.3 | 98.4 | 100.5 | 99.0 | 86.8 | 83.4 | 86.2 | | • | I B(CL) | ъ | 3.42 | 5.05 | 2.90 | 4.12 | 2.68 | 3.29 | 2.54 | 4.11 | 4.56 | | | PB(FE) | μ | 85.0 | 89.7 | 102.9 | 95.3 | 103.9 | 98.3 | 84.0 | 82.7 | 85.3 | | 1 | I B(I'L) | σ | 4.76 | 6.14 | 2.90 | 3.17 | 3.60 | 3.96 | 3.71 | 4.89 | 3.38 | | | PB(FE/A) | μ | 82.8 | 86.3 | 101.6 | 99.1 | 106.6 | 102.3 | 89.2 | 88.9 | 86.3 | | | I B(I L/A) | σ | 3.41 | 3.21 | 4.41 | 5.30 | 3.65 | 4.29 | 2.67 | 3.86 | 3.48 | | | MB(FE) | μ | 74.0 | 75.0 | 90.0 | 89.5 | 83.7 | 83.2 | 69.8 | 68.8 | 71.7 | | | MB(FE) | σ | 7.67 | 1.99 | 12.44 | 1.37 | 2.39 | 3.73 | 5.28 | 4.93 | 8.23 | | | MB(CE) | μ | 73.6 | 77.3 | 98.1 | 92.8 | 85.2 | 86.2 | 72.2 | 70.8 | 76.5 | | | MB(CE) | ь | 6.03 | 0.48 | 2.14 | 4.01 | 0.12 | 0.60 | 0.05 | 0.57 | 0.94 | | l II | MB(CE/A) | μ | 81.3 | 81.9 | 102.9 | 102.0 | 89.8 | 94.2 | 82.0 | 76.6 | 80.2 | | | MD(CDA) | ъ | 1.86 | 3.44 | 11.06 | 3.87 | 1.71 | 2.09 | 3.09 | 2.38 | 1.72 | | | PB(CE) | μ | 86.4 | 84.3 | 106.3 | 97.6 | 91.2 | 98.4 | 83.9 | 76.3 | 80.3 | | | PB(CE) | σ | 1.36 | 3.72 | 6.00 | 5.37 | 1.18 | 2.19 | 2.19 | 2.59 | 1.93 | | | PB(FE) | μ | 78.2 | 81.2 | 108.6 | 99.3 | 92.3 | 92.0 | 85.9 | 83.7 | 82.1 | | | FB(FE) | σ | 3.55 | 4.13 | 5.57 | 4.88 | 0.95 | 1.26 | 1.38 | 2.35 | 3.18 | | | UMB | μ | 87.6 | 79.1 | 91.1 | 89.2 | 89.4 | 84.3 | 73.9 | <i>7</i> 7.4 | 76.1 | | | OMB | ٥ | 3.67 | 3.99 | 5.29 | 5.21 | 3.70 | 3.22 | 4.96 | 2.75 | 6.76 | | | LMB | μ | 87.0 | 81.7 | 95.6 | 94.0 | 89.3 | 85.7 | 74.3 | 79.7 | 79.7 | | | LMD | σ | 4.19 | 3.38 | 3.42 | 2.95 | 3.72 | 2.49 | 2.79 | 1.46 | 3.18 | | ,,,, | I MD/A | μ | 87.1 | 79.3 | 94.7 | 91.9 | 87.2 | 85.9 | 74.4 | 75.3 | 80.4 | | 111 | III LMB(A) | σ | 3.19 | 3.35 | 4.57 | 2.71 | 3.20 | 2.93 | 1.21 | 4.06 | 3.57 | | | TIND | μ | 91.4 | 88.7 | 106.3 | 101.3 | 99.3 | 97.8 | 85.2 | 80.5 | 83.9 | | | UPB | σ | 4.55 | 6.51 | 6.57 | 4.24 | 8.18 | 7.73 | 7.86 | 7.04 | 7.98 | | | ממ ז | μ | 93.8 | 93.3 | 100.4 | 100.6 | 102.8 | 99.1 | 88.3 | 83.2 | 85.3 | | | LPB | σ | 4.60 | 4.66 | 4.94 | 2.21 | 4.35 | 4.83 | 5.64 | 6.99 | 6.61 | #### 2. Artificial Fault Simulations #### a. Fault Simulation In order to assess the 1/1 octave band method, three cases of artificial fault simulation were performed. Before we simulated these cases, we had to define a "fault". For simplicity, we assumed a fault could be approximated with 5 bars, as shown in Figure 17. The bandwidth of the fault is about 4.5 Hz. Figure 17 Fault with 6VdB Gain at Center Bar Based on Eq. (8), if the vibration amplitude doubles with a linear velocity scale then the VdB level will increase 6VdB at the corresponding frequency. Therefore, we defined a fault as having a 6VdB gain at the center bar and use four bars with 3VdB (half the power of the center bar) and 2VdB at the side bands to simulate leakage effects around the corresponding frequency. # b. Simulation of A Misalignment Fault Misalignment occurs when the center lines of two shafts are offset or meet at an angle. The characteristics of misalignment in a spectrum include: - High amplitude axial peaks and radial peaks at 1, 2 and 3 orders of shaft RPM. - Higher harmonics of the shaft RPM (greater than 4 orders of shaft RPM) are generally low in amplitude. Thus, it is reasonable to add the 6VdB gain fault at the first and second order. Figure 18(a) and 18(b) show the spectrums before and after imposing the fault. Figure 18(c) compares the differences in the 1/1 octave band levels and the 10-5,000 Hz broad band level for these two conditions. As can be seen in Figure 18(c), the 1/1 octave band levels have a 4.46 VdB gain at third band (which corresponds to 1 order of shaft RPM) and a 3.13 VdB gain at the forth band (which corresponds to 2 orders of shaft RPM). However, the 10-5,000 Hz broadband level only increased 2.17 VdB. Obviously, the 1/1 octave band method is more sensitive than broadband method. Figure 18 Simulation Result for Artificial Misalignment At Shaft ## c. Simulation of A Looseness Fault At Impeller Impeller looseness is a rotating element looseness. The important characteristics of looseness in a spectrum include: - Presence of a large number of harmonics. - Presence of half-harmonics. For example, the fire pump of a Type I has six impellers contributing to a forcing frequency of 6 orders of the shaft RPM, and we expect higher levels at 6 orders and its harmonics (12 orders, 24 orders,... etc.) for a loose impeller. The levels at half-harmonics (e.g., 3 orders and 9 orders) will also increase. Thus, in this looseness fault simulation, an artificial fault was applied by adding a fault with 6VdB at center bar at the 6th order(i.e., 6 x shaft RPM) and adding two fault with 3VdB at center bar at the 3rd order and the 9th order. Figure 19(a) and 19(b) show the spectrum of good and damaged fire pumps. Figure 19(c) compares the differences in 1/1 octave band levels and the 10-5,000 Hz broadband level for these two conditions. At the fifth of the 1/1 octave band levels, there is a 1.5 VdB gain. However, the 10-5,000 Hz broadband level only increased 0.29 VdB. Again, the 1/1 octave band method is more sensitive than broadband method. Figure 19 Simulation Result for Artificial Looseness At Impeller ### d. Simulation of A Bearing Fault For a steady state condition, some periodic signatures exist which relate to corresponding bearing faults, called bearing frequencies. These bearing frequencies can be
found in the VTAG. In this section, an artificial fault imposed at the motor bearing (free end) of a Type I fire pump has been simulated. The bearing frequencies of this bearing are tabulated in Table 17. TABLE 17: BEARING FREQUENCIES OF MRC310 BEARING | Bearing Frequency | Symbol | Order | |---|-----------------|-------| | Train order of rolling element | f _r | 0.38 | | Relative rotation order of rotating raceway | f _{t1} | 0.619 | | Spin order of rolling elements | f _b | 1.98 | | Irregularity order of rolling element | f _{bs} | 3.96 | | Irregularity order of rotating raceway | f _{ir} | 4.95 | | Irregularity order of stationary raceway | f _{or} | 3.04 | Suppose, for example, that there is a wear degradation in the inner raceway. Then the presence of the fundamental f_{ir} tone with harmonics would be expected. Figure 20(a) shows the spectrum of a good bearing. The 6 VdB fault is imposed at the 4.95 order as shown in Figure 20(b). Figure 20(c) shows the resulting increase in the 1/1 octave band levels. The 4.95 order is located at the fifth of the 1/1 octave bands. The 10-5,000 Hz broadband levels before and after damage are almost unchanged. However, the fifth octave band level has a 1.57 VdB increase. This illustrates why a single broadband level cannot be used to determine the condition of a machine. Figure 20 Simulation Result for Artificial Bearing Fault At Motor # V. RESULTS OF USING NAVSSES FREQUENCY DOMAIN DATABASE Since digital vibration survey instruments are more popular and easy to use than other types, only frequency spectrum reading were recorded and stored into the database. Thus, our 1/1 octave band analysis was performed using frequency domain data. Data measured for the Type I fire pumps in six survey dates are available in ASCII format. The total number of fire pumps analyzed was twenty-seven. Table 18 shows the available frequency data and corresponding survey date. Each set of data contains a 10 order and a 100 order spectra. The resolution for each set of data is 400 lines. The averaged spectra using these data are shown in Figure 21 and Figure 22 for each order range. The thin lined curve represents the mean levels and the thick lined curve represents for the mean plus one standard deviation levels. The 10 order spectrum was used to compute the first six 1/1 octave band levels and the 100 orders spectrum was used to compute the seventh and above band levels. A summary of 1/1 octave band analysis results for each pickup location using all the fire pumps is shown in Figure 23. As can be seen from Figure 23, the higher frequency levels (seventh band to ninth band) are about 95 VdB for the motor bearing and 110 VdB for the pump bearing. However, these higher frequency levels in Figure 14 using time waveform tape data are about 80 VdB for the motor bearing and 90 VdB for the pump bearing. As we reviewed the narrow band plot for the NAVSSES frequency domain data, we found that the levels below 54 VdB have been cut off and forced to 54 VdB. This is why the higher frequency levels using the NAVSSES frequency domain data are higher than the levels from using time waveform tape data. Figure 24 shows a good example of a cut off spectrum for a motor bearing using the NAVSSES frequency domain data. Table 18: DATA COLLECTION SHEET FOR AVAILABLE FREQUENCY DOMAIN DATA FROM NAVSSES DATABASE | Survey Date | Number of Fire
Pumps | Number of Pickup
Location | Number of Data
Set | | | |-------------|-------------------------|------------------------------|-----------------------|--|--| | 12-MAY-93 | 6 | 5 | 30 | | | | 23-FEB-92 | 5 | 5 | 25 | | | | 21-OCT-90 | 5 | 5 | 25 | | | | 07-JUN-90 | 4 | 5 | 20 | | | | 26-FEB-90 | 1 | 5 | 5 | | | | 30-OCT-89 | 6 | 5 | 30 | | | Figure 21 The Averaged Spectra for Type I Fire Pumps (0-10 Order) Using Frequency Domain Data Figure 21 The Averaged Spectra for Type I Fire Pumps (0-10 Order) Using Frequency Domain Data (Cont.) Figure 22 The Averaged Spectra for Type I Fire Pumps (0-100 Order) Using Frequency Domain Data Figure 22 The Averaged Spectra for Type I Fire Pumps (0-100 Order) Using Frequency Domain Data (Cont.) Figure 23 The Summarized 1/1 Octave Band Levels for Type I Fire Pumps Using NAVSSES Frequency Domain Data Figure 23 The Summarized 1/1 Octave Band Levels for Type I Fire Pumps Using NAVSSES Frequency Domain Data (Cont.) Figure 24 The Narrow Band Spectra for Type I Fire Pumps Using NAVSSES Frequency Domain Data Measured at MB(FE) and MB(CE) ## VI. CONCLUSIONS AND RECOMMENDATIONS Both time and frequency domain analyses were performed using fire pump vibration data to determine an appropriate alert level. Cross Peak Analysis in the time domain and 1/1 Octave Band Analysis in the frequency domain were used to set the alert threshold level(s). The following conclusions are drawn: ## Time Domain Analysis (Cross Peak Analysis) - a. The measured peak envelop data at five different pickup locations follows a Gaussian probability distribution in the VdB domain well. - b. The $\mu+2\sigma$ value computed using a peak envelop probability density function in the VdB domain gives a broadband peak amplitude alert level rather than the energy content in the vibration signal. - c. We used 12 measured data sets (6 fire pumps and 2 different measurement dates) which were available on cassette data tapes. To improve the quality of averaging, more measured data sets would be required. - d. NAVSSES does not save time domain data on any storage media at this time. However, for some shipboard machinery, such as low and high pressure air compressors, time domain data is required to cast measured data in the time-frequency domain to detect the possible faults. ## Frequency Domain Analysis (1/1 Octave Band Analysis) - a. 1/1 Octave Band Analysis (OBA) uses nine frequency band alert levels which provides more detailed information about machine condition than the simple broadband level measured by a vibrometer. When a significant change in VdB occurs in a particular frequency band or bands, narrow band zoom mode analysis can be performed for the selected frequency band(s) to identify the component(s) which may have faults. - b. OBA divides the frequency range into 10 bins over 10 kHz. The VdB level in each frequency bin is quite sensitive to changes in the energy content of the measured vibration signal. - c. The OBA approach can be easily incorporated into the Digital Vibration Survey Instrument (DVSI). - d. Five sets (27 fire pumps) of 400 line frequency domain DVSI data were received from NAVSSES and OBA was performed. The VdB levels in the higher frequency bins were generally high. This was caused by the fact that the vibration signals which were lower than the VdB limit(54 VdB) were set to the lower VdB limit in a specified dynamic range. - e. OBA was also performed using time domain data obtained from cassette data tapes. The changes in VdB levels at a particular frequency and the corresponding sidebands were introduced in narrow band FFT. The results are transferred into the octave band domain and the sensitivity in VdB levels in frequency bins was analyzed. The results are quite promising. - f. NAVSSES maintains 400 line frequency domain data for all machineries in a graphics postscript format, not in ASCII or digitized format. It was not possible to convert this graphics format data to ASCII format. Based on current studies, the following recommendations are made: - a. In the current machinery monitoring practice, frequency domain data is commonly saved using DVSI. However, for some shipboard machinery such as low and high pressure air compressors, time domain data is required to cast the measured data into the time-frequency domain to detect the possible faults. We suggest saving time domain data for the limited number of shipboard machinery. - b. The 1/1 Octave Band Analysis Method is suggested to implement in DVSI. - c. NAVSSES maintains 400 line frequency domain data for all machinery in graphics postscript format, not in ASCII or digitized format. It was not possible to convert this graphics format data to ASCII format. We suggest saving future files in ASCII format to permit further analysis of the data. - d. It is suggested to saving/storing DVSI data "as is", without alteration. ## APPENDIX A. MATLAB PROGRAM CODE #### A. ON-LINE HELP DOCUMENTATION This section of the guide contains all of the MATLAB functions that we have developed during this research. Each function contains a purpose, synopsis and description in alphabetical order. The MATLAB built-in functions used in these programs are described in the MATLAB reference guide. The code was written for the MATLAB 4.0 version. For those who want to use these programs in older versions need to consult the MATLAB reference guide for necessary modifications. #### 1. kurt ## Purpose kurtosis or fourth moment of vectors and matrices. ## **Synopsis** kurtosis=kurt(x) ## **Description** krut calculates the kurtosis or fouth moment value. For vectors, kurt(x) is the kurtosis value of the elements in vector x. For matrices, kurt(x) is a row vector containing the kurtosis value of each column. ## 2. logbar ## **Purpose** Plot 1/1 octave band bar plot ## **Synopsis** logbar(Vdb,LineStyle) logbar(Vdb,LineStyle,LineWidth) ## **Description** logbar(Vdb) draws a 1/1 octave band bar plot using Vdb as the y axis and the ANSI preferred center frequencies and pass bands as the x axis. LineStyle and LineWidth are optimal parameters. The default LineStyle is a solid line. See "plot" for more information about LineStyle. The default LineWidth is 0.5. #### 3. mstat ## Purpose Statistical analysis for time domain data. #### **Synopsis** ``` mstat(y,fs,nbar,id,manaly,mid,locat,mregen,pri) ``` ## **Description** mstat(y,fs,nbar,mid,locat,manaly,mthre,z,mregen,pri) will analyze the original data y using the *manaly* method and produce a statistical report with a *nbar* pdf plot.
mstat(y) allows the user to execute the program in an interactive way. y amplitude (calibrated velocity data) fs sampling frequency (Hz) nbar number of bars in Probability. Density Distribution Plot mid type of machinery locat pickup location manaly method of analysis =1 means All data points analysis =2 means Overall peak points analysis =3 means Cross peak points analysis mthre with threshold or not =1 without threshold =2 with threshold z percentage of threshold mregen transform to Vdb or not =1 without transform =2 transform to Vdb domain pri print or not ('y'es or 'n'o) 4. npc Purpose Cross peak points. **Synonsis** ypc=npc(y) Description ycp=npc(y) will find the peak points between each two zero-crossing. y original data ycp cross peak data # 5. npeak ## Purpose Overall peak points # Synopsis yp=npeak(y) # **Description** yp-mpeak(y) will find the overall peak points. y original data yp overall peak data ## 6. nthre Purpose Threshold **Synopsis** yt=nthre(y,z) # Description yt=nthre(y,z) will remove the points with z% threshold. - y original data - yt data after threshold - z percentage of the threshold If z=1 then the program will remove the peak data small than 1% of the maxinum peak value. #### 7. octave ## Purpose 1/1 octave band level. ## **Synopsis** ``` oct=octave(y) oct=octave(y,i₁,i₂) ``` ## **Description** oct=OCTAVE(y) returns the 1/1 octave band Vdo values from band 1 to band 10. oct=OCTAVE (y,i_1,i_2) returns the 1/1 octave band Vdb values from band i_1 to band i_2 and the others bands will be assigned a value of 0. y(:,1): Vdb values y(:,2): frequencies ## 8. psd # Purpose To evaluate the averaging VdB values using Hanning window. ## **Synonsis** VdB=psd(y,nblock) ## **Description** VdB=psd(y,nblock) returns the average VdB values using time domain data y. The number of averagings is specified by nblock. The recommend number of averagings is 20. The data matrix y must be a 2^n by 2 matrix. y(:,1) contains time series and y(:,2) contains corresponding velocity data. The hanning window is used to damp out the effects of the Gibbs phenomenon. The reference 0VdB is 10^{-8} m/sec. ## 9. skew ## Purpose Skewness or third moment. # **Synopsis** skewness=skew(x) # **Description** skew calculates the skewness or third moment value. For vectors, skew(x) is the skewness value of the elements in vector x. For matrices, skew(x) is a row vector containing the skewness value of each column. #### 10. transfer #### Purpose Plot time series and frequency spectrum. ## **Synopsis** [Ya,y,fx]=transfer(yo,t,fo,nblock,sec) #### **Description** transfer(yo,t,fo,nblock,sec) return three vectors, plot time series and frequency spectrum. The return vectors are: Ya averaged fft vector of yo y calibrated velocity vector fx frequency vector The input parameters include: yo original amplitude t time series corresponds to yo fo operating frequency (Hz) nblock number of data blocks sec interested frequency sections The spectrum will indicate the peak position assign in sec. For example, input sec=[5 150], the program will search the peak point between 5 Hz and 150 Hz. ## **B. PROGRAM CODE** #### 1. kurt.m ``` function kurtosis = kurt(y) % KURT Kurtosis. % For vectors, KURT(y) returns the kurtosis. % For matrices, KURT(y) is a row vector containing % the kurtosis of each column. See also COV. % Chao-Shih Liu 4-26-93 [n,m]=size(y); if n=1 y=y'; [n,m]=size(y); end for i=1:m meany(:,i)=mean(y(:,i)).*ones(n,1); stdy(:,i)=std(y(:,i))*ones(n,1); s=((y-meany)./stdy).^4; kurtosis = sum(s)/n; end ``` ## 2. logbar.m ``` function logbar(Vdb,LineStyle,LineWidth) % logber Plot 1/1 octave band ber plot using semilog in x axis(freq.) and linear scale in Y axis(Vdb) % % logbar(Vdb) plots the semilog bar plot % for 1/1 octave band analysis. % % logbar(Vdb,LineStyle) plots the semilog bar plot % for 1/1 octave band analysis with various % types. See "plot" for more about LineStyle % LineWidth is a optional parameter to control the line % width of the bar. Default value is 0.5 % Written By Liu, Chao-Shih 7/27/93 if nargin<2 lineStyle='-'; end if nargin==1 linewidth=0.5; end % Define the upper and lower limit of the pass bands (Hz) flow=[11.2 22.4 45 90 180 355 710 1400 2800 5600]; fhigh=[flow(2:10) 10000]; % Determine the coordinates of the bars xl=flow(:); xh=fhigh(:); y=Vdb(:); [n,m]=size(y); n3=n+3: yy=zeros(n3+1,m); xx=yy; xx(1:3:n3,:)=xl(1:n); xx(2:3:n3,:)=xh(1:n); xx(3:3:n3,:)=xh(1:n); xx=[xl(1);xx]; yy(1:3:n3,:)=y; yy(2:3:n3,:)=y; yy=[0;yy]; set(semilogx(xx,yy,LineStyle), 'linewidth',LineWidth) ``` #### 3. mstat.m ``` function mstat(v.fs.nbar.mid.locat.manaly.mthre.z.mregen.pri) % mstat(y,fs,nbar,mid,locat,manaly,mthre,z,mregen,pri) % will analysis the original data y and produce a % statistical report with a nbar pdf plot. % mstat(v) will allow the user to perform the program in an % interactive way. % y : amplitude (after calibration) % fs : sampling frequency (Hz) % nbar: number of bars in Prob. Density Distribution Plot % mid: type of machinery % locat : pickup location % manaly: method of analysis % =1 means All data points analysis % =2 means Overall peak points analysis % =3 means Cross peak points analysis % mthre: with threshold or not % =1 without threshold % =2 with threshold % z : percentage of threshold % mregen: transform to Vdb or not % =1 without transform % =2 transform to Vdb domain % pri : print or not % ='y' means to print out the result % Liu Chao-Shih 6/7/93 if nergin==1 faminput('Input the sampling frequency ? (Hz)'); nber-input ('Input the number of ber used in the PDF plot ?'); mid=input('Input the type of the machinery ?','s'); locat=input('Input the pickup location ?','s'); manaly-menu ('Choose the method of analysis'.... 'All data points analysis',... 'Overall peak analysis',... 'Cross peak analysis'); mthre-menu('Type of the threshold ?',... 'Without threshold',... 'With n% threshold'); if mthre-2 z=input('Input the % of the threshold');z=z/100; mregen=menu('Transform the data?',... 'Original data',... 'Vdb Domain'); end ``` ``` % Method of analysis if manaly==1 yp-y; mt='All data points' elseif manaly==2 yp=npeak(y); mt='Overall peak'; clse yp=npc(y); mt='Cross peak'; end % Type of threshold if mthre==1 tht=' without threshold'; else tht=['with 'num2str(z*100) '% threshold']; vp=nthre(yp,z); end pnumber=length(yp); % Compute the first four mements for linear domain yp=abs(yp); mepx=['m=' num2str(mean(yp))]; stdpx={'s=' num2str(std(yp))}; skewpx=['Skewness=' num2str(skew(yp))]; kurtpx=['Kurtosis=' num2str(kurt(yp))]; % Compute the first four moments for Vdb Domain % if mregen==2 yr=20^{\circ}\log 10(yp/1e-8); meanyr=mean(yr);stdyr=std(yr); skewyr=skew(yr);kurtyr=kurt(yr); merpx=['m = 'num2str(mean(yr))]; stdrpx=['s = ' num2str(std(yr))]; skewrpx=['Skewness=' num2str(skew(yr))]; kurtrpx=['Kurtosis=' num2str(kurt(yr))]; end % Plot the overall envelope PDF cig, if mregen==1 subplot(312) [av,au]=hist(yp,nbar);bar(au,av); ylabel('Probability');xlabel('Velocity (m/sec)'); title('Original Data(x) Envelope'); ``` ``` subplot(313);axis('off'); set(text(0.3,1,mepx),'fontn','symbol','fonta','italic'). set(text(0.3,0.8,stdpx), 'fontn', 'symbol', 'fonta', 'italic'); set(text(0.3.0.6,skewpx), 'fontn', 'times', 'fonta', 'italic'); set(text(0.3,0.4,kurtpx),'fontn','times','fonta','italic'); else subplot(323) [av.au]=hist(yp.nbar);bar(au,av); vlabel('Probability');xlabel('Velocity (m/sec)'); title('(a) Linear Domain'); subolot(324) [av.au]=hist(yr,nbar);bar(au,av); ylabel('Probability');xlabel('Vdb (0Vdb=1e-8 m/sec)'); title('(b) Vdb Domain'); subplot(313);axis('off'); set(text(0.1,1,mepx),'fontn','symbol','fonta','italic'); set(text(0.1,0.8,stdpx), 'fontn', 'symbol', 'fonta', 'italic'); set(text(0.1,0.6,skewpx), 'fontn', 'times', 'fonta', 'italic'); set(text(0.1,0.4 kurtpx), 'fontn', 'times', 'fonta', 'italic'); set(text(0.7,1,merpx), 'fontn', 'symbol', 'fonta', 'italic'); set(text(0.7,0.8,stdrpx), 'fontn', 'symbol', 'fonta', 'italic'); set(text(0.7,0.6,skewrpx),'fontn','times','fonta','italic'); set(text(0.7,0.4,kurtrpx),'fontn','times','fonta','italic'); end % Statistical analysis results subplot(311),axis('off'); tal=['Statistical Analysis Results for 'mid]; set(text(0.5,1,ta1), 'fontsi',14, 'fontw', 'bold', 'hori', 'c'); loc=['Pickup Location: 'locat]; set(text(0.5,0.8,loc), 'fontsi',14, 'fontw', 'bold', 'hori', 'c'); ta2=['Data analysis by using: 'mt tht]; set(text(0.5,0.4,ta2), 'hori', 'c'); block=['Number of data points: 'num2str(pnumber)]; set(text(0.5,0.2,block),'hori','c'); frange=['The sampling frequency: 'num2str(fs)' Hz']; set(text(0.5,0,frange), 'hori', 'c'); % Print the graph or not if nargin<4 pri=input('Print the plot? (y/n)','s'), end if pri=='y' set(1, 'PaperPosition', [1.25 2 6 8.5]) print -f1 end end ``` ## 4. npc.m ``` function ycp=npc(y) % ycp=npc(y) will find the peak points between each two % zero-crossing. % y : original data % ycp : cross peak data % Liu, Chao-Shih 4/26/93 y=y(:); k=length(y); y=y-mean(y)*ones(k,1); npc=0;l=1; ycp=zeros(k,1); for n=2:k if sign(y(n)^*y(n-1))=-1 h=n-1;npc=npc+1; [yp,np]=max(abs(y(1:h))); np=np+l-1; ycp(npc)=y(np); l=h+1, end end ycp=ycp(1:npc); end ``` # 5. npeak.m ``` function yp-mpeak(y) % yp-mpeak(y) will find the overall peak points. % y : original data % yp : overall peak data % Liu, Chao-Shih 4/14/93 y=y(:); k=length(y), y=y-mean(y)*ones(length(k),1); yp=zeros(k,1); yp(1)=y(1); pc=1; for n=2:k-1 nsl=n-l; n1=sign((y(n+1)-y(n))*(y(n)-y(ns1))); if n1==-1 | y(n)==y(ns1) pc=pc+1;yp(pc)=y(n); end end yp=yp(1:pc,1); end ``` #### 6. nthre.m ``` function yt=nthre(y,z) % yt=nthre(y,z) will remove the points with z% threshold % y : original data % yt : data after threshold % z : percentage of the threshold % If z=1 then the program will not return the peak % peak data small than 1% of the maxinum peak value. % Liu, Chao-Shih 4/14/93 % y=sort(y(:)); ly=length(y); maxy=max(y); miny=z^*0.01*maxy; for l=1:ly if y(1) > miny po=l; yt=y(po:ly,1); break end end ```
7. octave.m ``` function oct=octave(y,i1,i2) % OCTAVE Octave band. % % oct=OCTAVE(y) returns the 1/1 octave band Vdb values from % band 1 to band 10. % oct=OCTAVE(y,i1,i2) returns the 1/1 octave band Vdb values % from band il to band i2 and the others % bands will be assigned to 0. % % y(:,1): Vdb values % y(:,2): frequencies % Chao-Shih Liu 7/13/93 fc=[16 31.5 63 125 250 500 1000 2000 4000 8000]; flow=[11.2 22.4 45 90 180 355 710 1400 2800 5600]; fhigh=[22.4 45 90 180 355 710 1400 2800 5600 11200]; np=max(size(y)); oct=zeros(10,1), % Default the il and i2 if nargin==1 il=1;i2=10; end % if Vdb lower than 0 db, force the value=0db % for k=1:np if y(k,1)<0 v(k,1)=0; end end % convert to linear velocity value % vref=1e-8; y(:,1)=10.^(y(:,1)/20)*vref; fmax=y(np,2);df=fmax/(np-1); % Calculate the 1/1 octave band levels in linear domain df2=df/2; fupper=y(:,2)+df2; % Upper limit of frequency flower=y(:,2)-df2; % Lower limit of frequency ``` ``` sum=zeros(i2-i1,1); for k=i1:i2: mark l=fupper-flow(k); mark2=flower-flow(k); mark3=fupper-fhigh(k); mark4=flower-fhigh(k); for j=1:np if mark4(j)>=0 % larger than the band(k) break else if mark l(i) \le 0 % smaller than the band(k) % do nothing else % cover the band(k) if mark3(j)>0 if mark2(i)<0 % band(k) smaller than df sum(k)=y(j,1)^2*(fhigh(k)-flow(k)); break; else % partial band in band(k+1) sum(k)=sum(k)+y(j,1)^2=abs(mark4(j)); end elac if mark2(j)<0 % partial band in band(k-1) sum(k)=y(j,1)^2+markl(j); sum(k)=sum(k)+y(j,1)^2+df; end end end end end % Convert the octave band levels from linear scale to VdB levels oct(k)=20*log10(sqrt(sum(k))/vref); end % Plot the results bar(oct) xlabel('Number of Center Frequency') ylabel('Vdb value (0Vdb=1e-8 m/sec)') axis([i1-1 i2+1 40 120]) for k=i1:i2 octext=sprintf('%5.1f',oct(k)); set(text(k,oct(k)+2,octext), 'fontw', 'bold', 'horiz', 'center') end ``` #### 8. psd.m ``` function Vdb=pad(y,nblock) % Vdb=PSD(y,nblock) % This function will compute the average Vdb value by % using hanning to nblock data set. % y: original data matrix (time, velocity) % nblock: number of data blocks % Ya: average fft Vdb vector of y(0Vdb=1e-8 m/sec) % fx : frequency vector % Liu Chao-Shih 12:11PM 7/14/93 % standardize the data matrix n=size(y,2); if n~=2 y=y'; end t=y(:,1);y=y(:,2); dt=t(2)-t(1); fs=1/dt; vref=1e-8; % Compute the fft data n=length(y)/nblock;n2=n/2; nl=1; w=hanning(n); for nb=1:nbiock nh=nb*n; Y(1:n,nb)=fft(w.*y(nl:nh,1))*dt; nl=nh+1; end if nblock~=1 Y=(sum(abs(Y)')/nblock)'; clse Y=abs(Y); end Ya=20*log10(2*Y/vref); f=fs/2*(0:n2)/n2; Ya(n2+2:n)=[]; fx=f(2:n2+1)'; df=fx(2)-fx(1); fx=[0,fx]; Vdb=[Ya,fx]; ``` #### 9. skew.m ``` function skewness = skew(y) %SKEW Skewness. For vectors, SKEW(y) returns the skewness. % For matrices, STD(y) is a row vector containing % the skewness of each column. See also COV. % Chao-Shih Liu 4-26-93 [n,m]=size(y); if n==1 y=y`; [n,m]=size(y); end for i=1:m meany(:,i)=mean(y(:,i)).*ones(n,1); stdy(:,i)=std(y(:,i))*ones(n,1); s=((y-meany)./stdy).^3; skewness = sum(s)/n; end ``` #### 10. transfer.m ``` function [Ya,y,fx]=transfer(yo,t,fo,nblock,sec) % [Ya,y,fx]=transfer(yo,t,fo,nblock,sec) % This function will plot time & frequency domain % % yo : original velocity vector (before calibration) % t: time vector % fs : sample frequency % fo : operation frequency = RPM/60 % nblock: number of data blocks % Ya: average fft vector of y % fx: frequency vector % y : original velocity vector (after calibration) % Liu, Chao-Shih 1:58 7/10/93 dt=t(2)-t(1); fs=1/dt; itext=input('Input the title of this record =>','s'); locat=input('Input the location of data collect','s'); scale=menu('Choose the method of X scale', 'Frequency (Hz)', 'Order'); vref=le-8; % Standarized the size of y [xd,yd]=size(y); if yd = 1 y=y';t=t'; end ny=length(y); % Compute the fft data n=ny/nblock;n2=n/2; nl=1; win=menu('Type of Window System', 'Without window system',... 'Hanning window', 'Hamming window'); if win==1 w=ones(n, 1); elseif win==2 w=hanning(n); else w=hamming(n); end for nb=1:nblock nh=nb*n: Y(1:n,nb)=fft(w.*y(nl:nh,1))*dt; nl=nh+1; end ``` ``` if nblock~=1 Y=sum(abs(Y)')/nblock; clse Y=abs(Y); end Y_a=20*log10(2*Y/vref); f=fs/2*(0:n2)/n2; Ya(n2+2:n)=[]; if scale==1 fx=f(2:n2+1); df=fx(2)-fx(1); xt='Frequency (Hz)';unit=' Hz'; fx=f(2:n2+1)/fo; df=fx(2)-fx(1); low=ceil(0.75/df);high=ceil(1.25/df); [Ymax, Ypos]=max(Ya(low:high));fscale=fx(low+Ypos-1); fx=fx/fscale;fo=fo*fscale; xt=['Frequency (Normalized Orders)'];unit=' Order ': end df=fx(2)-fx(1); sec=ceil(sec/df); if sec(1)==0 sec(1)=1; end for mk=1:length(sec)-1 [mav(mk),pos(mk)]=max(Ya(sec(mk):sec(mk+1))); pos(mk)=pos(mk)+sec(mk); end % Plot time domain and frequency domain figure(1); cif; subplot(212); tf=1024; if ny<1024 tf=ny; plot(t(1:tf,1),y(1:tf,1),'r');axis([t(1,1) t(tf,1) min(y) max(y)]); title('Time Domain');xlabel('Time (sec)');ylabel('Velocity(m/sec)');grid % General information subplot(211);axis('off') mfo=['The operation condition = 'num2str(fo*60)... 'RPM (= 'num2str(fo) 'Hz)']; mloc=['Data pickup location = 'locat]; mfs=['Data sampling frequency = 'num2str(fs) 'Hz']; mdp=['Total number of sampling data points = 'num2str(length(y))]; set(text(0.5,1,itext),'fontsi',15,'fontw','bold','horiz','center') text(0.05,0.9,mloc);text(0.05,0.82,mfo); text(0.05,0.74,mfs);text(0.05,0.66,mdp); text(0,0.5,'* The time domain'); mt=['Mean value = 'num2str(mean(y)) 'm/sec']; ``` ``` text(0.05,0.4.mt); st=['Standard deviation = 'num2str(std(y)) 'm/sec']; text(0.05,0.32,st); text(0.05,0.24,['The plot only shown 'num2str(tf) 'data points']); pause figure(2);clf;subplot(212); plot(fx, Ya(2:n2+1), 'r'); upper=(ceil((max(mav))/10)+1)+10; axis([0 fx(n2) 20 upper]); title('Frequency Domain');xlabel(xt);ylabel('Velocity in Vdb');grid for lop=1:length(sec)-1 text(fx(pos(lop)-1),mav(lop),num2str(lop)); end % General information subplot(211);axis('off') mfo=['The operation condition = 'num2str(fo*60)... 'RPM (= 'num2str(fo) 'Hz)']; mloc=['Data pickup location = 'locat]; mfs=['Data sampling frequency = 'num2str(fs) 'Hz']; mbk=['Number of data block averages = 'num2str(nblock)]; mdp=['Block size = 'num2str(length(y)/nblock) 'points/block']; set(text(0.5,1,itext),'fontsi',15,'fontw','bold','horiz','center'); text(0.05,0.9,mloc);text(0.05,0.82,mfo); text(0.05,0.74,mfs);text(0.05,0.66,mbk);text(0.05,0.58,mdp); text(0,0.5,'* The frequency domain'); for lop=1:length(sec)-i as=[num2str(lop),' = (',num2str(fx(pos(lop)-1)),... unit,', ',num2str(mav(lop)),' db)']; if lop>4 xpos=0.55;ypos=0.8-0.08*lop; else xpos=0.05;ypos=0.48-0.08*lop; end text(xpos,ypos,as); end morder=['1 order = 'num2str(fo) 'Hz']; text(0.05,0.08,morder); mref=['The reference 0 Vdb = 'num2str(vref) 'm/sec']; text(0.05,0,mref); % zooming up the plot? % zoom=1; while zoom~=3 subplot(212) zoom=menu('zoom up ?','0-10 order',... 'Use mouse to select the range', 'No'); if 200m==1 axis([0 10 20 upper]); elseif zoom==2 axis([0 fx(n2) 20 upper]); ``` ``` [xs,ys]=ginput(2); xrange=sort(xs); if xrange(1)=0; end axis([xrange(1) xrange(2) 20 upper]); else break end end % Print out the plot % uiprint=['set(1,"PaperPosition",[0.25 1 8 9.25]);' 'print -f1;' ... 'set(2,"PaperPosition",[0.25 1 8 9.25]);' 'print -f2;' 'end']; uicontrol('style', 'push', 'units', 'normal', 'pos',[0.9 0.9 0.08 0.06], ... 'string', 'print', 'call', 'units', 'normal', 'pos',[0.9 0.82 0.08 0.06], ... 'string', 'exit', 'call', 'end'); ``` # APPENDIX B. EXAMPLES OF USING MATLAB PROGRAM IN PC486 MATLAB allows the user to write a *script* file. A *script* file is an external file that contains a sequence of MATLAB statements. The following example will show the *script* files used to perform the analysis. ## A. CROSS PEAK ANALYSIS EXAMPLE In this example, a CG-59 fire pump measured at MB(FE) data set is used in the analysis. The file name of the data file is *flp1.asc*. The MATLAB command is anchored by >>. ``` >> load flp1.asc >> y=flp1(:,2); >> t=flp1(:,1); >> mstat(y) ``` The user can then interact with the program to select the method of analysis. Instead of this interactive process, the user can use the following to execute the program in an automatic way. ``` >> load flp1.asc >> y=flp1(:,2); >> t=flp1(:,1); >> ypc=npc(y); >> yt=nthre(ypc,1); >> mid='CG-59 Fire Pump'; >> locat='MB(FE)'; ``` >> mstat(yt, 10000, 10,2,mid,locat, 3,2,1,2,'y') #### B. 1/1 OCTAVE BAND ANALYSIS EXAMPLE Here, proceeding as in the above example, a CG-59 fire pump measured at MB(FE) data set is used to perform the 1/1 octave band analysis. The file name of the data file is flp1.asc. The MATLAB command is anchored by >>. # APPENDIX C. FIGURES OF STATISTICAL ANALYSIS RESULTS This section contains figures of the statistical analysis results with and without considering damaged data sets. Figure C.1 The Statistical Analysis Results for Type I Fire Pumps Measured at MB(FE) (a) Linear Velocity Domain (b) VdB Domain Figure C.2 The Statistical Analysis Results for Type I Fire Pumps Measured at MB(CE) (a) Linear Velocity Domain (b) VdB Domain Figure C.3 The Statistical Analysis Results for Type I Fire Pumps Measured at PB(CE) (a) Linear Velocity Domain (b) VdB Domain Figure C.4 The Statistical Analysis Results for Type I Fire Pumps Measured at PB(FE) (a) Linear Velocity Domain (b) VdB Domain Figure C.5 The Statistical Analysis Results for Type I Fire Pumps Measured at PB(FE/A) (a) Linear Velocity Domain (b) VdB Domain ## Statistical Analysis Results Type II Fire Pump Pickup Location : MB(FE) Data analysis by using: Cross peak with 1% threshold Number of data points: 4.733e+004 The sampling frequency: 1e+004 Hz μ =0.0005043 σ=0.0006038 Skewness=2.059 Kurtosis=6.976 $\mu = 88.39$ $\sigma = 10.5$ Skewness=-0.1393 Kurtosis=2.42 Figure C.6 The Statistical Analysis Results for Type II Fire Pumps Measured at MB(FE) (a) Linear Velocity Domain (b) VdB Domain # Statistical Analysis Results Type II Fire Pump Pickup Location : MB(CE) Data analysis by using: Cross peak with 1% threshold Number of data points:
4.835e+004 The sampling frequency: 1e+004 Hz Figure C.7 The Statistical Analysis Results for Type II Fire Pumps Measured at MB(CE) (a) Linear Velocity Domain (b) VdB Domain Figure C.8 The Statistical Analysis Results for Type II Fire Pumps Measured at MB(CE/A) (a) Linear Velocity Domain (b) VdB Domain Figure C.9 The Statistical Analysis Results for Type II Fire Pumps Measured at PB(CE) (a) Linear Velocity Domain (b) VdB Domain Figure C.10 The Statistical Analysis Results for Type II Fire Pumps Measured at PB(FE) (a) Linear Velocity Domain (b) VdB Domain Figure C.11 The Statistical Analysis Results for Type III Fire Pumps Measured at UMB (a) Linear Velocity Domain (b) VdB Domain ## Statistical Analysis Results Type III Fire Pump Pickup Location : LMB Data analysis by using: Cross peak with 1% threshold Number of data points: 2.176e+005 The sampling frequency: 1e+004 Hz Figure C.12 The Statistical Analysis Results for Type III Fire Pumps Measured at LMB (a) Linear Velocity Domain (b) VdB Domain Figure C.13 The Statistical Analysis Results for Type III Fire Pumps Measured at LMB(A) (a) Linear Velocity Domain (b) VdB Domain Figure C.14 The Statistical Analysis Results for Type III Fire Pumps Measured at UPB (a) Linear Velocity Domain (b) VdB Domain Figure C.15 The Statistical Analysis Results for Type III Fire Pumps Measured at LPB (a) Linear Velocity Domain (b) VdB Domain ### Statistical Analysis Results Type I Fire Pump Pickup Location : PB(CE) w/o 89#6,90#3,90#6 Data analysis by using: Cross peak with 1% threshold Number of data points: 2.704e+005 The sampling frequency: 1e+004 Hz $\mu = 0.002319$ $\sigma = 0.001988$ Skewness=1.046 Kurtosis=3.304 $\mu = 103.3$ $\sigma = 9.245$ Skewness=-0.5101 Kurtosis=2.506 Figure C.16 The Statistical Analysis Results (Without Damaged) for Type I Fire Pumps Measured at PB(CE) (a) Linear Velocity Domain (b) VdB Domain Figure C.17 The Statistical Analysis Results (Without Damaged) for Type I Fire Pumps Measured at PB(FE) (a) Linear Velocity Domain (b) VdB Domain Figure C.18 The Statistical Analysis Results (Without Damaged) for Type II Fire Pumps Measured at MB(CE) (a) Linear Velocity Domain (b) VdB Domain Figure C.19 The Statistical Analysis Results (Without Damaged) for Type III Fire Pumps Measured at UMB (a) Linear Velocity Domain (b) VdB Domain Figure C.20 The Statistical Analysis Results (Without Damaged) for Type III Fire Pumps Measured at LMB (a) Linear Velocity Domain (b) VdB Domain Figure C.21 The Statistical Analysis Results (Without Damaged) for Type III Fire Pumps Measured at UPB (a) Linear Velocity Domain (b) VdB Domain #### LIST OF REFERENCES - 1. Xistris, G. D., and Lowe, J. M., "On the Effectiveness of Maintenance Programs and Policies for Shipboard Machinery," Condition Monitoring '84, Proceedings of an International Conference on Condition Monitoring, Swansea, U.K., 10-13 April 1984, pp.55-66. - 2. Tracor Applied Sciences, "Advanced Vibration Analysis Studies," Tracor Documt No.: T86-0109567-U, Dec. 1986. - 3. Marshall, B. R., "A Surface Navy Vibration Program Overview: Standardization and State-of-the-Art," Naval Engineers Journal, Vol. 100, May 1988, pp. 90-100. - Milner, G. M., Leach, J., and Smith, R., "Development of an Automatic Machinery Vibration Analysis (AMVA) System," Detection, Diagnosis and Prognosis of Rotating Machinery to Improve Reliability, Maintainability, and Readiness through the Application of New and Innovative Techniques, Proceedings of the 41st Meeting of the Mechanical Failures Prevention Group, Patuxent River, Maryland, 28-30 October 1986, pp. 237-248. - Chapman, C. L., and Jolley, R., "Systems and Equipment Maintenance Monitoring for Surface Ships (SEMMSS) Program," Naval Engineers Journal, V. 99, November 1987, pp.63-69. - Strunk, W. D., "The Evaluation of Accelerometer Mount Transmissibility for U.S. Navy Applications," Proceedings of the 6th International Modal Analysis Conference, January 1988, pp. 1384-1389. - 7. Tracor Applied Sciences, "An Analysis of Submarine Machinery Vibration Monitoring," Tracor Documt No.:T89-01-9546-U, May 1986. - Vibration Test and Analysis Guide, DLI Engineering Corporation, Feburary, 1988. - 9. Mitchell, J. S., "An Introduction to Machinery Analysis and Monitoring," PennWell Books, Tulsa, Oklahoma, 1981, Chapter 9. - 10. Randall, R. B., "Computer Aided Vibration Spectrum Trend Analysis for Condition Monitoring," Maintenance Management International, v. 5, 1985, pp.161-167. - 11. Campel, C., "Determination of Vibration Symptom Limit Values in Diagnostics of Machinery," Elserier Science Publications, B.V., 1985. - 12. Murphy, T. J. and Smiley, R. G., "Set Vibration Alarm Levels without Gauss work," Froceedings of Comadem '89 Conference, pp.386-396. - 13. Thomas, M. R. and Ball, A. D., "An Algorithm for the Statistical Analysis of Vibration Readings." - 14. Glew, C. W. A., "The Effectiveness of Vibration Analysis as a Maintenance Tool," Trans. I. Mar. E., Vol. 86, 1974, pp.29-50. - 15. Carmody, T., "The Measurement of Vibration as a Diagnostic Tool," Trans. I. Mar. E., Vol. 84, 1972, pp. 147-159. - Papoulis, A., "Probability, Random Variables, and Stochastic Processes," McGraw-Hill Book Co., 1991, Chapter 5. - Pierce, A. D., "Acoustics: An Introduction to Its Physical Principles and Applications," McGraw-Hill Book Co., 1981, Chapter 2. ### **INITIAL DISTRIBUTION LIST** | 1. | Defense Technical Information Center | No. of Copies | |----|--------------------------------------|---------------| | 1. | Cameron Station | 2 | | | Alexandria, VA 22304-6145 | | | | 7 MONIMICHAE, VII 2200 VOI 10 | | | 2. | Dudley Knox Library, Code 52 | 2 | | | Naval Postgraduate School | | | | Monterey, CA 93943-5002 | | | 3. | Department Chairman, Code ME | 1 | | | Department of Mechanical Engineering | | | | Naval Postgraduate School | | | | Monterey, CA 93943 | | | 4. | Prof. Y.S. Shin, Code ME/Sg | 2 | | | Department of Mechanical Engineering | | | | Naval Postgraduate School | | | | Monterey, CA 93943 | | | 5. | Dr. Jae Jin Jeon, Code ME/Je | 1 | | | Department of Mechanical Engineering | | | | Naval Postgraduate School | | | | Monterey, CA 93943 | | | 6. | Prof. Larry Jones, Code AS/Jn | 1 | | | Department of Administrative Science | | | | Naval Postgraduate School | | | | Monterey, CA 93943 | | | 7 . | Mr. Jon Loeliger |] | |------------|--|---| | | CDNSWC Code 153 (Formly NAVSSES, Code 101D4) | | | | Integrated Shipboard Maintenance Branch | | | | Philadelphia Naval Shipyard | | | | Philadelphia, PA 19112-5083 | • | | 8. | Mr. Orlando Taraborrelli | 1 | | | CDNSWC (Formly NAVSSES, Code 051B) | | | | Machinery Condition Monitoring | | | | Philadelphia Naval Shipyard | | | | Philadelphia, PA 19112-5083 | | | 9. | Mr. Arthur Cautilli | 1 | | | CDNSWC (Formly NAVSSES, Code 051B) | | | | Machinery Condition Monitoring | | | | Philadelphia Naval Shipyard | | | | Philadelphia, PA 19112-5083 | | | 10. | Mr. Ken Jacobs, Deputy Director | 1 | | | Surface Ship Maintenance Division | | | | Naval Sea Systems Command | | | | Code 915B | | | | Washington, D.C. 20362-5101 | | | 11. | Mr. Lynn Hampton, Program Manager | 1 | | | Machinery Condition Analysis | | | | NAVSEADET PERT(CV) | | | | Code 1822 | | | | 1305 Ironsides | | | | Bremerton, WA 98310-4924 | | | 12. | Capt. C. S. Liu, Taiwan, R.O.C. Army | 1 | | | Department of Chemical Engineering | | | | Chung Cheng Institute of Technology | | | | Tashih, Tao-Yuan, | | | | Taiwan, R.O.C. | |